Table Captions

Table 1. Late Holocene (ca. 2000 BP to present) sites and components from Haida Gwaii with well analysed vertebrate faunal assemblages. Sites 760T, 767T, 1370T, and 2008T are included for invertebrate data only. The first 21 assemblages (i.e. those above the dotted line) represent southern sites from the Gwaii Haanas region; the three assemblages at the bottom of the table are from Graham Island.

Table 2. Vertebrate data from field-screened excavation unit assemblages by class. Note that fish are likely under-represented in sites (610T, 617T, 675T, 687T, FhTx-19, GaUa-18) that were not subject to consistent fine screening (i.e. \leq 3.2mm).

Table 3. Summary of mammal abundance from field-screened excavation unit assemblages. "Other Mustelid" includes river otter, marten, and ermine; "Seal/Sea Lion" includes harbour seal, fur seal, northern sea lion, and unidentified pinnipeds; "Terrestrial Mammal" includes black bear and cervids.

Table 4. Mean values for stable Nitrogen and Carbon isotopes ratios in select fauna from Haida Gwaii sites. Represents a combination of new data and data previously reported in Orchard (2011b) and Szpak et al. (2009, 2012, 2013). *Two outliers from 699T are not included in the site mean and standard deviation plotted in Figure 4.

Table 5. Summary of bird abundance from Haida Gwaii assemblages. "Other Seabirds" includes loons, grebes, albatross, petrels, fulmars, shearwaters, and cormorants; "Waterfowl" includes ducks, geese, and swans; "Other Birds" includes corvids, shorebirds, songbirds, other raptors, and owls. All data reflect field-screened excavation unit assemblages with the exception of GaUa-18 which, as presented in the original source (Christensen et al. 2010), includes combined values from excavation units, fine-screened bulk samples, and specimens collected during monitoring.

Table 6. Summary of fish abundance from field-screened excavation unit assemblages. "Other Fish" includes dogfish, skate, ratfish, smelt, clingfish, Gadids, prickleback, gunnel, wolf-eel, sablefish, greenling, lingcod, sand lance, perch. Note that small-bodied fish, including herring, are likely under-represented in sites (610T, 617T, 675T, 687T, FhTx-19, GaUa-18) that were not subject to consistent fine screening (i.e. \leq 3.2mm). For comparison, fine-screened bulk sample data for fish abundance are presented in Table 7.

Table 7. Summary of fish abundance from laboratory-processed bulk samples sieved through fine screens (i.e. \leq 3mm). Kunghit area samples (first five sites) are quantified by weight (Acheson 1998:57), while the remaining sites are quantified by specimen count (NISP). As a result, the Kunghit data likely under-represent the relative abundance of small fish (i.e. herring) and over-represent the relative abundance of larger-bodied fish.

Table 8. Relative proportions (% by weight) of invertebrate taxa from late Holocene sites in Haida Gwaii, based on analysed bulk samples. Results for GaUa-18 represent a mean value of coarse (1/4") and fine (2mm) screened column samples. "Other Inverts."

includes chiton, limpet, Northern abalone, Giant Pacific scallop, crab, sea urchin, sand dollar, and marine snails. *GaUa-18 - Mussel was not differentiated by species or size classes.

Table 1. Late Holocene (ca. 2000 BP to present) components from Haida Gwaii with well analysed vertebrate faunal assemblages. Sites 760T, 767T, 1370T, and 2008T are included for invertebrate data only. The first 21 assemblages (i.e. those above the dotted line) represent southern sites from the Gwaii Haanas region; the three assemblages at the bottom of the table are from Graham Island.

Site Code	Site Name/Location	Houses	Setting	Approx. Dates	Screening ¹	Source(s)
610T (FaTr-3)-C2	Prevost Point - Comp. 2	3	Exposed	800 BP to contact	6mm & 3mm	Acheson 1998; Wigen 1990
610T (FaTr-3)-C1	Prevost Point - Comp. 1	3	Exposed	1470 to 800 BP	6mm & 3mm	Acheson 1998; Wigen 1990
617T (FaTs-3)	Bowles Point	2	Exposed	745 BP (±)	6mm & 3mm	Acheson 1998; Wigen 1990
668T (FaTt-9)	Louscoone Point	4	Exposed	935 to 300 BP	3mm	Acheson 1998; Wigen 1990
675T (FaTt-16)-C2	SW Moresby - C2 + EU1		Exposed	<800 BP	6mm & 3mm	Acheson 1998; Wigen 1990
675T (FaTt-16)-C1	SW Moresby - Comp. 1		Exposed	1431 to 1170 BP	6mm & 3mm	Acheson 1998; Wigen 1990
687T (FaTt-28)-C2	Louscoone Inlet - Comp. 2	1	Semi-Protected	590 to 300 BP	6mm & 3mm	Acheson 1998; Wigen 1990
687T (FaTt-28)-C1	Louscoone Inlet - Comp. 1	1	Semi-Protected	1120 to 995 BP	6mm & 3mm	Acheson 1998; Wigen 1990
699T (FbTs-4)	Benjamin Point	16+	Exposed	500 BP to AD 1880	1/8" (3.2 mm)	Orchard 2009
717T	Swan Bay	1?	Semi-Protected	1000 BP to contact	1/8" (3.2 mm)	Orchard 2009
740T	East Copper Island	1+	Exposed	440 to 390 BP	1/8" (3.2 mm)	Orchard 2009
760T	Island Bay	1+	Protected	2000 to 1000 BP	1/8" (3.2 mm)	Orchard 2008
767T	Burnaby Narrows	2+	Protected	2000 to 1000 BP	1/8" (3.2 mm)	Orchard 2008
781T	Marco Island	1+	Semi-Protected	1000 BP to contact	1/8" (3.2 mm)	Orchard 2009
785T	Lyell Bay	4+	Protected	1500 BP to contact	1/8" (3.2 mm)	Orchard 2009
922T	Hotspring Island		Semi-Protected	1880 to 1100 BP	3mm	Sumpter 1999; Wigen 1999
923T	Ramsay Island	1?	Exposed	500 BP to contact	1/8" (3.2 mm)	Orchard 2009
924T	Burnaby Narrows	4+	Protected	1000 BP to contact	1/8" (3.2 mm)	Orchard 2009
1134T	Darwin Sound	3?	Protected	Contact	1/8" (3.2 mm)	Orchard 2009
1370T	Huxley Island		Semi-Protected	1000 to 300 BP	1/8" (3.2 mm)	Orchard 2011
2008T	Ross Island		Exposed	post-2000 BP	1/8" (3.2 mm)	Orchard 2011
FhTx-19	Second Beach			1200 BP to contact	1/4" (6.4 mm)	Christensen et al. 1999
GaUa-18 - C1	Masset - Comp. 1			900 to 450 BP	1/4" (6.4 mm)	Christensen et al. 2010
GaUa-18 - C2	Masset - Comp. 2			1500 to 900 BP	1/4" (6.4 mm)	Christensen et al. 2010

¹ Represents screen sizes for field-screened excavation unit sediments only; all sites also included fine-screened bulk samples (Table 7). With the exception of 668T (FaTt-9), Acheson's (1998) Kunghit region sites were subject to only limited 3mm screening; most material was recovered from only 6mm screens.

Site Code	Screening	Mam	mals	Biı	rds	Fi	Total	
		(NISP)	(%)	(NISP)	(%)	(NISP)	(%)	(NISP)
610T - C2	6mm & 3mm	296	2.84%	1346	12.92%	8777	84.24%	10419
610T - C1	6mm & 3mm	198	1.55%	1299	10.20%	11240	88.25%	12737
617T	6mm & 3mm	58	2.25%	915	35.45%	1608	62.30%	2581
668T	3mm	1099	2.36%	394	0.85%	45100	96.80%	46593
675T - C2	6mm & 3mm	86	8.22%	72	6.88%	888	84.89%	1046
675T - C1	6mm & 3mm	32	5.55%	16	2.77%	529	91.68%	577
687T - C2	6mm & 3mm	109	1.65%	93	1.41%	6416	96.95%	6618
687T - C1	6mm & 3mm	72	2.63%	27	0.99%	2636	96.38%	2735
699T	1/8" (3.2mm)	152	1.27%	185	1.54%	11651	97.19%	11988
717T	1/8" (3.2mm)	35	0.50%	50	0.72%	6877	98.78%	6962
740T	1/8" (3.2mm)	25	7.46%	198	59.10%	112	33.43%	335
781T	1/8" (3.2mm)	76	1.32%	116	2.02%	5563	96.66%	5755
785T	1/8" (3.2mm)	32	0.50%	73	1.14%	6317	98.36%	6422
922T	3mm	19	1.51%	14	1.11%	1224	97.37%	1257
923T	1/8" (3.2mm)	7	3.43%	183	89.71%	14	6.86%	204
924T	1/8" (3.2mm)	14	0.08%	25	0.15%	16721	99.77%	16760
1134T	1/8" (3.2mm)	13	1.41%	7	0.76%	904	97.84%	924
FhTx-19	1/4" (6.4mm)	29	3.53%	13	1.58%	780	94.89%	822
GaUa-18 - C1	1/4" (6.4mm)	130	7.50%	86	4.96%	1517	87.54%	1733
GaUa-18 - C2	1/4" (6.4mm)	108	15.49%	20	2.87%	569	81.64%	697

Table 2. Vertebrate data from field-screened excavation unit assemblages by class. Note that fish are likely under-represented in sites (610T, 617T, 675T, 687T, FhTx-19, GaUa-18) that were not subject to consistent fine screening (i.e. \leq 3.2mm).

Site Code	Wh	Whale		/Dolphin	Seal/Se	a Lion	Sea (Otter	Other N	Iustelid	Terrestria	Total	
	(NISP)	(%)	(NISP)	(%)	(NISP)	(%)	(NISP)	(%)	(NISP)	(%)	(NISP)	(%)	(NISP)
610T - C2	66	22.30%			94	31.76%	106	35.81%	25	8.45%	5	1.69%	296
610T - C1	75	37.88%			62	31.31%	49	24.75%	8	4.04%	4	2.02%	198
617T	41	70.69%			10	17.24%	5	8.62%	2	3.45%			58
668T	449	40.86%	3	0.27%	227	20.66%	387	35.21%	22	2.00%	11	1.00%	1099
675T - C2	40	46.51%			25	29.07%	13	15.12%	8	9.30%			86
675T - C1					27	84.38%	5	15.63%					32
687T - C2	2	1.83%	3	2.75%	57	52.29%	19	17.43%	28	25.69%			109
687T - C1					56	77.78%	13	18.06%	3	4.17%			72
699T	1	0.62%	1	0.62%	66	43.42%	80	52.63%	1	0.66%	3	1.97%	152
717T			4	11.43%	18	51.43%	12	34.29%	1	2.86%			35
740T					9	36.00%	16	64.00%					25
781T			45	59.21%	19	25.00%	10	13.16%	2	2.63%			76
785T			3	9.09%	12	36.36%	9	27.27%	7	21.21%	2	6.06%	33
922T					10	52.63%	6	31.58%	3	15.79%			19
923T					3	42.86%	4	57.14%					7
924T					6	42.86%	7	50.00%	1	7.14%			14
1134T			3	23.08%	8	61.54%					2	15.38%	13
FhTx-19			1	3.45%	6	20.69%	21	72.41%			1	3.45%	29
GaUa-18 - C1					45	34.88%	84	65.12%					129
GaUa-18 - C2					15	15.00%	85	85.00%					100

Table 3. Summary of mammal abundance from field-screened excavation unit assemblages. "Other Mustelid" includes river otter, marten, and ermine; "Seal/Sea Lion" includes harbour seal, fur seal, northern sea lion, and unidentified pinnipeds; "Terrestrial Mammal" includes black bear and cervids.

	δ^{13} C	St. Dev.	δ^{15} N	St. Dev.	N									
Sea Otter	Sea Otter (n=32):													
699T	-10.81	1.14	13.61	0.43	9									
699T*	-12.50		13.20		1									
699T*	-14.27		13.19		1									
717T	-10.71	0.34	14.05	0.71	3									
740T	-10.97	0.74	13.93	0.49	3									
781T	-10.94	0.27	13.77	0.53	5									
785T	-10.80	0.52	14.10	0.44	3									
924T	-10.90	0.71	13.15	0.49	2									
GaUa-18	-11.63	0.34	12.71	0.55	5									
Ancient M	urrelet (n=	=15):												
699T	-14.49	0.51	17.91	0.30	2									
781T	-14.21	0.47	17.75	0.96	7									
785T	-14.15	0.57	17.98	0.56	6									
Salmon (n:	=19):													
699T	-14.58	0.86	12.66	0.83	5									
717T	-15.02	0.63	12.02	0.62	7									
924T	-15.37	0.63	12.14	0.84	7									
Rockfish (1	n=75):													
699T	-11.23	0.76	15.77	0.65	17									
740T	-11.95	0.81	15.82	0.72	8									
781T	-10.32	0.41	16.33	0.88	31									
785T	-10.09	0.77	16.43	0.51	9									
924T	-11.60		15.00		1									
1134T	-11.37	0.38	16.35	0.74	6									
2008T	-11.53	0.15	15.00	0.87	3									

Table 4. Mean values for stable Nitrogen and Carbon isotopes ratios in select fauna from Haida Gwaii sites. Represents a combination of new data and data previously reported in Orchard (2011b) and Szpak et al. (2009, 2012, 2013). *Two outliers from 699T are not included in the site mean and standard deviations plotted in Figure 4.

Table 5. Summary of bird abundance from Haida Gwaii assemblages. "Other Seabirds" includes loons, grebes, albatross, petrels, fulmars, shearwaters, and cormorants; "Waterfowl" includes ducks, geese, and swans; "Other Birds" includes corvids, shorebirds, songbirds, other raptors, and owls. All data reflect field-screened excavation unit assemblages with the exception of GaUa-18 which, as presented in the original source (Christensen et al. 2010), includes combined values from excavation units, fine-screened bulk samples, and specimens collected during monitoring.

Site Code	Alc	ids	Other S	eabirds	Wate	rfowl	Bald 1	Eagle	Gu	ılls	Other	Birds	Total
	(NISP)	(%)	(NISP)	(%)	(NISP)	(%)	(NISP)	(%)	(NISP)	(%)	(NISP)	(%)	(NISP)
610T - C2	1237	91.90%	25	1.86%	7	0.52%	52	3.86%	6	0.45%	19	1.41%	1346
610T - C1	1201	92.46%	60	4.62%	11	0.85%	13	1.00%	2	0.15%	12	0.92%	1299
617T	904	98.80%	2	0.22%	2	0.22%	4	0.44%	1	0.11%	2	0.22%	915
668T	151	38.32%	64	16.24%	46	11.68%	15	3.81%	46	11.68%	72	18.27%	394
675T - C2	64	88.89%	6	8.33%					1	1.39%	1	1.39%	72
675T - C1	6	37.50%	1	6.25%			1	6.25%	1	6.25%	7	43.75%	16
687T - C2	18	19.35%	16	17.20%	6	6.45%	23	24.73%	4	4.30%	26	27.96%	93
687T - C1	3	11.11%	12	44.44%			7	25.93%	3	11.11%	2	7.41%	27
699T	154	83.24%	5	2.70%	7	3.78%	14	7.57%			5	2.70%	185
717T	41	82.00%	3	6.00%	1	2.00%			5	10.00%			50
740T	193	97.47%	4	2.02%			1	0.51%					198
781T	106	91.38%	4	3.45%	5	4.31%					1	0.86%	116
785T	57	78.08%	4	5.48%	7	9.59%	3	4.11%			2	2.74%	73
922T	5	35.71%	1	7.14%	5	35.71%	2	14.29%			1	7.14%	14
923T	182	99.45%									1	0.55%	183
924T	17	68.00%	1	4.00%	1	4.00%	3	12.00%	2	8.00%	1	4.00%	25
1134T							1	14.29%	5	71.43%	1	14.29%	7
FhTx-19	1	7.69%	5	38.46%	3	23.08%			1	7.69%	3	23.08%	13
GaUa-18 - C1	1	0.97%	2	1.94%	99	96.12%					1	0.97%	103
GaUa-18 - C2			1	3.70%	23	85.19%	2	7.41%	1	3.70%			27

Site Code Screening Salmon Herring Rockfish Sculpin Flatfish **Other Fish** Total (NISP) (%) (NISP) (%) (NISP) (%) (NISP) (%) (NISP) (%) (NISP) (%) (NISP) 610T - C2 78.34% 13.01% 0.64% 3.27% 403 4.59% 6mm/3mm 6876 13 0.15% 1142 56 287 8777 2.78% 610T - C1 6mm/3mm 25.74% 61.98% 0.93% 2893 84 0.75% 6966 104 312 881 7.84% 11240 617T 6mm/3mm 161 10.01% 4 0.25% 1231 76.55% 6 0.37% 16 1.00% 190 11.82% 1608 668T 82.97% 37419 3829 8.49% 1831 4.06% 0.06% 1078 2.39% 917 2.03% 3mm 26 45100 675T - C2 6mm/3mm 505 56.87% 1.46% 237 26.69% 1.24% 41 4.62% 81 9.12% 888 13 11 675T - C1 10.02% 6mm/3mm 53 2 0.38% 392 74.10% 32 6.05% 50 9.45% 529 6mm/3mm 687T - C2 3676 57.29% 78 1.22% 1445 22.52% 19 0.30% 564 8.79% 634 9.88% 6416 687T - C1 6mm/3mm 2309 87.59% 225 8.54% 2 0.08% 56 2.12% 44 1.67% 2636 699T 1/8"(3.2mm)6979 59.90% 3228 27.71% 2.10% 31 0.27% 1.42% 1002 8.60% 245 166 11651 717T 1/8"(3.2mm) 3763 54.72% 2958 43.01% 5 0.07% 7 0.10% 12 0.17% 132 1.92% 6877 740T 1/8"(3.2mm) 35.71% 15 13.39% 18 16.07% 2 1.79% 12 10.71% 25 22.32% 40 112 781T 1/8"(3.2mm)674 12.12% 3083 55.42% 921 16.56% 75 1.35% 101 1.82% 709 12.74% 5563 785T 1/8"(3.2mm) 4853 76.82% 3.34% 502 7.95% 88 1.39% 67 1.06% 596 9.43% 6317 211 922T 43.87% 17.48% 225 18.38% 37 3.02% 17.24% 3mm 537 214 211 1224 923T 1/8"(3.2mm) 6 42.86% 5 35.71% 3 21.43% 14 924T 1/8"(3.2mm) 34.73% 10549 63.09% 19 0.10% 0.22% 293 1.75% 5807 0.11% 17 36 16721 0.22% 2 0.22% 1134T 1/8"(3.2mm) 768 84.96% 14.49% 0.11% 2 904 131 1 FhTx-19 1/4"(6.4mm) 69 8.85% 15 1.92% 9 1.15% 39 5.00% 492 63.08% 156 20.00% 780 GaUa-18 - C1 1/4"(6.4mm) 203 13.38% 12 0.79% 1 0.07% 1040 68.56% 137 9.03% 124 8.17% 1517 GaUa-18 - C2 1/4"(6.4mm) 383 67.31% 2 0.35% 169 29.70% 9 1.58% 6 1.05% 569

Table 6. Summary of fish abundance from field-screened excavation unit assemblages. "Other Fish" includes dogfish, skate, ratfish, smelt, clingfish, Gadids, prickleback, gunnel, wolf-eel, sablefish, greenling, lingcod, sand lance, perch. Note that small-bodied fish, including herring, are likely under-represented in sites (610T, 617T, 675T, 687T, FhTx-19, GaUa-18) that were not subject to consistent fine screening (i.e. \leq 3.2mm). For comparison, fine-screened bulk sample data for fish abundance are presented in Table 7.

Table 7. Summary of fish abundance from laboratory-processed bulk samples sieved through fine screens (i.e. \leq 3mm). Kunghit area samples (first five sites) are quantified by weight (Acheson 1998:57), while the remaining sites are quantified by specimen count (NISP). As a result, the Kunghit data likely under-represent the relative abundance of small fish (i.e. herring) and over-represent the relative abundance of larger-bodied fish.

Site Code	Salı	non	Herr	ring	Rock	fish	Scul	pin	Flat	ish	Other Fish		Total
Kunghit sites:	(grams)	(%)	(grams)	(%)	(grams)	(%)	(grams)	(%)	(grams)	(%)	(grams)	(%)	(grams)
610T	11.74	24.55	0.45	0.94	31.53	65.93	0.09	0.19	0.31	0.65	3.70	7.74	47.82
617T	0.32	9.33	0.03	0.87	2.62	76.38	0.04	1.17	0.05	1.46	0.37	10.79	3.43
668T	49.84	69.76	0.87	1.22	11.77	16.47	0.07	0.09	6.61	9.25	2.29	3.21	71.45
675T			0.03	0.46	6.37	97.25			0.05	0.76	0.10	1.53	6.55
<u>687T</u>	12.52	53.97	0.04	0.17	6.72	28.97	0.01	0.04	2.43	10.47	1.48	6.38	23.20
Other sites:	(NISP)	(%)	(NISP)	(%)	(NISP)	(%)	(NISP)	(%)	(NISP)	(%)	(NISP)	(%)	(NISP)
699T	84	60.00	44	31.43							12	8.57	140
717T	16	42.11	20	52.63							2	5.26	38
740T			3	50.00							3	50.00	6
781T	6	2.32	217	83.78	26	10.04			1	0.39	9	3.47	259
785T	33	61.11	12	22.22	3	5.56	1	1.85			5	9.26	54
922T	178	25.32	37	5.26	83	11.81	139	19.77	10	1.42	256	36.42	703
923T				No ia	lentifiable f	ish recov	ered from t	he 923T o	column sam	ples.			
924T	33	43.42	40	52.63	1	1.32					2	2.63	76
1134T	32	100.00											32
GaUa-18 - C1	119	23.29	42	8.22			317	62.04	13	2.54	20	3.91	511
GaUa-18 - C2	83	49.70	16	9.58			39	23.35	7	4.19	22	13.17	167

Table 8. Relative proportions (% by weight) of invertebrate taxa from late Holocene sites in Haida Gwaii, based on analysed bulk samples. Results for GaUa-18 represent a mean value of coarse (1/4") and fine (2mm) screened column samples. "Other Inverts." includes chiton, limpet, Northern abalone, Giant Pacific scallop, crab, sea urchin, sand dollar, and marine snails. *GaUa-18 - Mussel was not differentiated by species or size classes.

Site Code	California Mussel	Barnacle	Other Inverts.	Clam	Small Mussel*	Total (%)	Total Shell (g)	Setting
610T	95.34	0.29	4.01	0.36		100.00	3805.59	Exposed
617T	96.40	0.37	1.10	2.13		100.00	1677.00	Exposed
668T	92.83	4.29	0.73	2.15		100.00	10643.32	Exposed
675T	96.43	0.84	2.21	0.52		100.00	4112.49	Exposed
687T	96.52	2.06	0.75	0.68		100.00	13163.22	Semi-Protected
699T	98.43	0.67	0.66	0.25		100.01	1497.76	Exposed
717T	54.34	1.96	2.14	41.51	0.06	100.01	158.34	Semi-Protected
740T	80.40	11.50	4.85	3.24		99.99	1601.26	Exposed
760T		0.01	0.02	99.74	0.23	100.00	991.40	Protected
767T			0.15	99.08	0.78	100.00	206.20	Protected
781T	4.19	22.34	0.48	68.61	4.39	100.01	1333.69	Semi-Protected
785T	1.20	0.27	0.53	75.43	22.58	100.01	759.84	Protected
922T	4.40	18.30	7.83	67.94	1.53	100.00	3513.08	Semi-Protected
923T	86.85	13.13	0.01			99.99	219.58	Exposed
924T	0.84	0.47	0.57	73.78	24.34	100.00	591.35	Protected
1134T	0.19	1.76	1.60	22.27	74.19	100.01	62.60	Protected
1370T	20.57	6.27	0.86	51.96	20.35	100.00	1594.44	Semi-Protected
2008T	60.66	10.76	2.08	19.49	7.01	100.00	2893.71	Exposed
GaUa-18 - C1	n/a*	11.31	10.01	44.87	33.82*	66.19	4160.80	
GaUa-18 - C2	n/a*	0.98	6.92	65.64	26.47*	73.54	11960.70	