Having an accurate estimate of total fisheries removals is essential for developing population models used in fisheries management and, generally, for understanding the impacts of human beings on marine ecosystems. Unfortunately, few fishing sectors, even in the developed world, are able or required to compile a comprehensive catch record, leaving a large portion of the catch unaccounted for in official government statistics. Depending upon its magnitude, the incorporation of unreported catch into population estimates for any particular fishery might profoundly alter predictions of stock dynamics in exploited species and ecosystems, and help to explain observed ecological trends. Fisheries management that fails to consider unreported catch may put fish stocks at risk of overfishing or extinction. The presence of unreported catch also devalues catch information obtained from well-regulated fisheries.

This short contribution synthesizes available catch information for BC marine fisheries from 1873 to the present. All data originate from Canada’s Exclusive Economic Zone, corresponding to FAO Area 61. Recent and historical landings data for industrial and recreational sectors are collated from governmental and non-governmental sources. Estimates of catches before 1950, and estimates of unreported catch (discarded catch and unreported subsistence, artisanal, and recreational landings) for these years, are derived from previous catch reconstructions.

This research note updates to 2011 the unreported catch estimates made by Ainsworth and Pitcher (2005), extends the catch reconstruction back to 1873, and provides an electronic database consistent in format with the Sea around Us Project’s Atlas of Fisheries Impacts on the World’s Marine Ecosystems, 1950–2010 to be published by Island Press, Washington, DC.
(D. Pauly, and D. Zeller, in preparation). These data are available in Ainsworth (2015), Pauly and Zeller (in press), or as an online appendix to this document.

**MATERIAL AND METHODS**

The core contribution of this note is a catch database in MS Excel that includes the following data fields: (1) CountryFishing, (2) eezarea, (3) SubAreaEez, (4) faoarea, (5) Otherarea, (6) Year, (7) TaxonName, (8) Original fao name, (9) CatchAmount, (10) Sector, (11) CatchType, (12) Input, (13) Notes. The “Notes” field includes references(s) for each data point.

The database separates fishing sector (field “Sector”) into four categories: industrial, artisanal, recreational, and subsistence. “Industrial” fisheries are large-scale commercial fisheries that account for most of the recorded catch. All industrial landings data prior to 1950 are taken from Wallace (1999), who compiled historical landings from twenty-six separate articles and databases covering all major industrial fisheries in British Columbia. He used catch statistics, naturalist accounts, archaeological and anthropological literature, newspapers, expert opinion, and First Nations interviews to estimate historical catches, cross-validating where possible. Combining historical and ecological data in this way is a powerful method for describing ecosystems of the past (Wiersma and Sandlos 2011), although the social context of historical reports and literature must be considered (Taylor 2013). Salmon and herring landings from 1951 to 1995 are provided by historic catch statistics available online from the Pacific Regional Data Unit (PRDU) (DFO 2012a), and information for more recent years is provided by online commercial catch statistics summaries (DFO 2012b). Historical groundfish landings from 1951 to 1995 are available in the PRDU historical catch statistics on CD-ROM (DFO 2004). DFO (2012b) supplies information from 1996 to 2011 for eighteen additional fish groups, including several species of flatfish, rockfish, and demersal fish. Halibut data from 1951 onwards are taken from the International Pacific Halibut Commission (Hare 2000). However, those data represent head-off and gutted fish, so a 25 percent correction factor was added after the report of the Pacific Fishery Management Council (PFMC 2010). Sardine information from 2006 onwards is provided by the Canadian Science Advisory Secretariat (CSAS 2012).

Artisanal fisheries for butter clams, lingcod, and abalone are defined in Food and Agriculture Organization (FAO) catch statistics (FAO 2010).
“Recreational” fisheries data are compiled from the Department of Fisheries and Oceans (DFO) creel and logbook surveys (DFO 2012c) for salmon and some groundfish, Wallace (1999) for some groundfish, and Hare (2010) for halibut. “Subsistence” fisheries are documented for five species of salmon (Wallace 1999), halibut (Hare 2010), and herring roe (DFO 2012b). These sources generally define the subsistence catch in much the same way as does FAO – as catch that is “shared and consumed directly by the families and kin of the fishers rather than being bought by intermediaries and sold at the next larger market” (FAO 2015), but all estimates of this catch are shaped by the lack of formal reporting requirements. Catch in subsistence fisheries is estimated for years after 1995 by extrapolating Wallace’s trends, assuming a constant fraction with respect to recorded catch, where the fraction is calculated using an average of 1990 to 1994 data. Note that this assumption may represent a lower estimate of reported catch for years as early as 2009 since an Indigenous right to fish commercially was recognized in Ahousaht Indian Band and Nation v. Canada Attorney General, 2009 B.C.S.C. 1494 (Madame Justice Garson) – a decision recently confirmed by the Supreme Court of Canada.

Catch type (field “CatchType”) is divided into reported landings, unreported landings, and discards. Consistent with the Sea around Us catch database, catch amounts for each species reported to FAO constituted the “reported” data. Any catch beyond this (originating, for example, from unreported catch estimates or governmental landings data not appearing in FAO records) was aggregated into the “unreported” category. Consequently, a search in this database for reported data will yield a total catch amount equal to FAO recorded quantities but have finer taxonomic resolution than the FAO records (since disaggregated national-level data were preferred over FAO figures). A search for unreported data will yield all information absent from FAO records. All subsistence, artisanal, and recreational catch, as well as discards, is categorized here as “unreported.” Discard information originates mainly from observer programs: for example, in the halibut (Hare 2000) and groundfish trawl fleets (see Ainsworth and Pitcher [2004, 2005] for various source articles).

For groundfish trawl and all salmon fisheries, the rates of discards and unreported catch (including illegal fisheries) were determined originally by Ainsworth and Pitcher (2004, 2005) and are here extrapolated to 2011. Ainsworth and Pitcher used a subjective methodology in which the historical factors influencing the unreported catch (regulatory, technological, and political changes likely to have affected the rates of misreporting)
were considered in developing a relative time series of unreported catch by fleet and species. Every significant event, such as the introduction of a new type of bycatch reduction device or implementation of quotas, was scored according to its potential to affect the rate of misreporting (Table 1). The running numerical trend tabulated on the base of these scores indicated the relative incentive to misreport catch in each five-year time period. The relative trends were scaled to absolute estimates of unreported catch using quantitative “anchor points” from literature—known quantities of catch missing from the official record (e.g., bycatch estimates from onboard observer programs such as Haigh et al. [2002]).

**RESULTS**

The catch database is presented in Appendix A.

**TOTAL CATCH**

Annual extractions of fish from the ecosystem increased slowly and consistently for about eighty years and then jumped sharply after the Second World War, reaching a maximum of 700,000 tonnes in 1963.
Catches then dropped precipitously to an average level of about 300,000 to 400,000 tonnes per year and held more or less steady at that rate until the late 1980s. A second rapid increase then occurred, peaking at almost 700,000 tonnes in 1991. This was followed by a sharp decrease in catch in the late 1990s, leading to the current catch levels of about 200,000 to 300,000 tonnes per year.

**UNREPORTED CATCH**

Historically, a large portion of the catch came from unregulated fisheries, so unreported catch was relatively high around mid-century (Figure 2). Unreported catch constituted about 50 percent of total extractions from 1950 to about 1970. After that, better reporting mechanisms were brought into place (Ainsworth and Pitcher 2005), and unreported catch gradually fell to about 35 to 40 percent of total extractions until the late 1990s. Subsequently, the fraction of unreported catch fell again to about 15 to 20 percent of total extractions, a rate that has maintained to the present.

**NON-INDUSTRIAL FISHERIES**

Recreational, artisanal, and subsistence fisheries together capture only a small fraction of the catch of the industrial fleets (Figure 3). Throughout the 1950s and 1960s that fraction was consistently between 2 and 5 percent.
In the 1970s and 1980s, a significant increase in recreational fishing increased that fraction to an average of between 5 and 7 percent, with a peak in 1986 at almost 8 percent. In the mid-1990s, the total recreational catch dropped to about one-third of its size in the previous two decades. Since the mid-1990s, recreational, artisanal, and subsistence fisheries have accounted for about 4 to 5 percent of total extractions.

**DISCARDS**

From the 1950s to the early 1970s, discarded catch is estimated to have been less than 1 percent of total industrial landings (Figure 3). This fraction increased to between 2 and 3 percent during the 1980s and 1990s, driven primarily by increases in the amount of benthic trawling (Ainsworth and Pitcher 2005); this is evidenced by a proportional increase in the amount of groundfish discards relative to landings (Figure 4). By the early 2000s, discards constituted 4 to 5 percent of industrial landings and have remained at this level to the present.

**DISCUSSION**

FAO statistics currently account for about 80 percent of actual fishery removals from BC waters. The missing catch amounts to about forty to fifty thousand tonnes every year. That amount is likely sufficient to alter population dynamics in ecosystem and predictive fisheries models.
Figure 3. Non-industrial landings and industrial discards.

Figure 4. Groundfish catch.

and introduce a bias in management indices. In particular, retrospective methods requiring long time series, such as cohort analysis and model fitting, are likely to be affected since the rate of misreporting was significantly higher in past decades. From the 1950s to the 1970s, only 50 percent of total extractions were recorded by FAO. In the 1980s and 1990s, only 60 percent of removals were documented. FAO statistics should therefore be
considered a lower bound of fisheries catch and treated as unreliable for ecological modelling without correction. Species aggregation in FAO data, though inconvenient, is less of an obstacle to effective use in temperate waters like those in British Columbia than in more biodiverse settings.

Historical evidence tells us that pre-industrial fisheries in British Columbia were large enough to have an impact on fish populations. Our estimate suggests that, by 1900, total removals were almost half of the current levels. It is likely that there were significant removals much earlier, even prior to European contact (Hewes 1973). Yet the pre-history of British Columbia fisheries suggests that there was both active management and sustainable use of resources that lasted for millennia (Alcock et al. 2007). For this reason, historical reconstructions of fisheries catch provides a baseline for what may be extracted safely from healthy marine ecosystems. This analysis also provides correction factors useful for interpreting governmental catch statistics in social and ecological modelling applications.

ACKNOWLEDGEMENTS

Dr. Daniel Pauly and Dr. Dirk Zeller at the University of British Columbia Fisheries Centre contributed by reviewing the database and commenting on an early draft of this article. The author’s time was funded by the USF Marine Resource Assessment Program and the Sloan Foundation.

REFERENCES


Taylor, J. 2013. “Knowing the Black Box: Methodological Challenges in Marine Environmental History.” Environmental History 18: 60-75.
