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SUMMARY   Iron Deficiency Anemia (IDA) is a significant global health challenge impacting 
cognitive, physical, and behavioral development, particularly in infants. Despite the current 
knowledge on anemia and its manifestations, the role of the gut microbiome and its 
relationship with systemic inflammation and anemia have yet to be explored. This study 
explores the relationship between anemia, systemic inflammation, and the gut microbiome in 
infants using a dataset from McClorry et al. Our analysis revealed that neither infection status 
nor inflammation levels significantly altered microbial diversity, however, differentially 
abundant genera were related to inflammation levels in infected anemic infants. Metabolic 
pathways analysis further identified the upregulation of pathways involved in energy 
production and immune response, emphasizing the systemic effects of inflammation in 
anemic infants. Our findings underscore the potential of microbial interventions in managing 
inflammation-related anemia, highlighting the need for further research into the microbiome’s 
role in inflammatory processes. 
 
 
INTRODUCTION 

ron is a significant micronutrient in the human body essential for growth and development 
(1). The element plays a critical role in cell function and proliferation, erythropoiesis, and 
oxygen transport (1). However, iron deficiency is a serious public health issue worldwide, 

particularly in developing countries where staple foods contain low iron and nutritional 
diversity is less accessible (2). Anemia can result from inadequate iron intake, which accounts 
for more than half of all anemia cases (3). Prolonged iron deficiency can result in iron 
deficiency anemia (IDA) (4), affecting around 16% of the global population and 
disproportionately impacting women and children under 5 years of age (5). IDA is 
characterized by inadequate iron storage or retention in the body and is often exacerbated by 
inflammation, leading to severe cognitive, physiological, and behavioral consequences (4).  

Ferritin, a primary iron storage protein, is increasingly recognized as an acute-phase 
reactant and an indicator of inflammation in studies involving the gut microbiome. Elevated 
ferritin levels are often observed in response to systemic inflammation, serving as a protective 
mechanism to sequester iron from pathogens, thus limiting their growth (6, 7). Research has 
shown that changes in ferritin levels can reflect the inflammatory status influenced by gut 
microbiota dysbiosis or disorders (8), making it a valuable biomarker for assessing gut-related 
inflammatory conditions (7).  

Various studies have demonstrated how gut dysbiosis — an imbalance in the microbial 
community — can contribute to anemia by impacting iron absorption and utilization (1). For 
instance, an overgrowth of pathogenic bacteria that compete for iron can reduce the quantity 
available for host absorption (9). Conversely, beneficial bacterial species such as 
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Lactobacillus and Bifidobacterium have been associated with enhanced iron absorption and 
utilization (4), underscoring the potential of the gut microbiome in mitigating IDA (10). 
Anemia, particularly prevalent in infants, can be compounded by infections that alter gut 
microbial composition and function, leading to impaired iron absorption and utilization. 
Moreover, certain infections can induce inflammation, which further affects iron metabolism 
by increasing ferritin levels, a process that sequesters iron away from both the host and 
pathogens (11). As such, this complex interaction between infection, the gut microbiome, and 
anemia necessitates further exploration to provide greater insight into addressing the 
underlying causes. 

Our study pivots towards understanding the complex interplay between anemia, systemic 
inflammation, and the gut microbiome. By measuring adjusted ferritin levels, we can discern 
the extent of inflammation, which is a common complicating factor in anemia. This approach 
allows for a more accurate assessment of the iron status and the inflammatory state of the 
patient, providing a clearer picture of the interplay between anemia, inflammation, and gut 
microbiome alterations. Specifically, our study uses adjusted ferritin levels as a marker of 
inflammation to explore how high levels of inflammation in anemic infants can modify the 
gut microbial composition and trigger cellular stress responses. By examining the differential 
abundance patterns in the microbiomes of infected anemic infants with varying levels of 
inflammation, we seek to identify key microbes that underpin these relationships. 
Additionally, our study will investigate the metabolic pathways activated in response to 
inflammation, offering new insights into the systemic effects of anemia and identifying 
potential microbial targets for therapeutic intervention. 

We hypothesize that alterations in the gut microbiome composition, driven by 
inflammation, contribute to the pathogenesis of anemia in infected infants. Specifically, we 
expect to observe shifts in microbial abundance and metabolic activity associated with high 
inflammation status, potentially exacerbating anemia and impacting overall health outcomes. 
 
METHODS AND MATERIALS 

Dataset and metadata. The dataset utilized for this study was originally generated by 
McClorry et al. from the University of California, Davis (12). It includes cross-sectional stool 
and serum samples collected from a cohort of 95 infants (53 maleand 42 female), all aged 12 
months and drawn from the broader Moronacocha area in Iquitos, Loreto, Peru. Stool samples 
underwent DNA extraction and 16S ribosomal RNA gene Illumina sequencing, focusing on 
the V4 region amplified using the F515-R806 primer pair. Fecal and serum metabolomes 
were quantified using 1H-nuclear magnetic resonance. Anemia was defined according to the 
World Health Organization (WHO) with a hemoglobin concentration <120 - 130 g/L (13). 
Infection status was further classified based on standard cut-offs of serum C-reactive protein 
(CRP) >5 mg/L and α1-acid glycoprotein (AGP) >1 g/L, categorizing infants into groups: 
incubation (elevated CRP only), early convalescence (elevated CRP and AGP), late 
convalescence (elevated AGP only), and reference (neither elevated). Incubation, early 
convalescence, and late convalescence were grouped to represent “infected” infants. Ferritin 
levels (adj_ferritin_status) were also reclassified, with normal levels classified as high 
inflammation and deficient levels classified as low inflammation.  
 
Developer platform. GitHub was used as the main developer platform for this project to 
create and store code. The GitHub repository can be found here:  
https://github.com/Kshemaka1/Team-12-Jaydens-475-Crew  
 
Data processing in QIIME2. The sequencing data was processed using the Quantitative 
Insights Into Microbial Ecology Version 2 (QIIME 2) platform (14) which is detailed in the 
supplemental QIIME2 Script (QIIME2Script). Single-end sequence reads were imported 
using the manifest format and demultiplexed to resolve individual sample data. The reads 
underwent a quality control process using the Divisive Amplicon Denoising Algorithm 2 
(DADA2), which corrects errors in amplicon sequencing and identifies unique amplicon 
sequence variants (ASVs) (15). The sequences were truncated at 253 base pairs, a length 
determined to ensure a minimum median Phred score of 30 (Figure S1). Post-quality control, 
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the reads were denoised, and chimeric sequences were removed. The non-chimeric sequences 
were clustered into ASVs, resulting in a total of 193 samples and 1434 distinct features.  
 
Taxonomic analysis in QIIME2. Taxonomic classification for the samples was generated 
using the SILVA 138-99 database (16). QIIME2 was utilized to eliminate any mitochondrial 
and chloroplast DNA sequences present in the samples. A phylogenetic tree was constructed 
using QIIME2 FastTree and MAFFT alignment methods (14).  
 
Metadata filtering in R. OTUs with low significance (counts < 5 across samples) and 
samples with insufficient read depth (< 100 reads) were excluded. Data was subsetted to 
include only 12-month-old infants diagnosed with anemia. Filtered data to include only 
samples with infected infants. Metadata filtering is detailed in the supplementary R script 
(RScript 1). 
 
R packages used.  Analysis was done using R version 4.3.2 and the following R packages 
were installed and loaded: tidyverse (17), DESeq2 (18), dplyr (19), vegan (20), ggplot2 (21), 
phyloseq (22), ape (23), microbiome (24), and indicspecies (25). 
 
Alpha and beta diversity analysis. To address differences in sequencing depth across 
samples, the dataset was rarefied to a depth of 10,000 sequences per sample. Alpha diversity 
was assessed using Shannon’s diversity index. A Wilcoxon rank sum test was carried out to 
determine statistical significance between infected anemic infants with high and low 
inflammation. Shannon’s diversity was also carried out on the infection status (incubation, 
early/late convalescence) of anemic infants, and significance was tested with a Kruskal-
Wallis test. Alpha diversity analysis is detailed in the supplemental R script (RScript 1 & 
RScript 2). Beta diversity was assessed through weighted unifrac distance matrices between 
infants with high and low inflammation. Results from beta diversity analysis were visualized 
by generating a Principal Coordinates Analysis (PCoA) plot. Permutation multivariate 
analysis of variance (PERMANOVA) was performed to assess statistical significance. 
Visualization of data was performed using ggplot2 (21). Beta diversity analysis is detailed in 
the supplementary R script (RScript 3).  
 
Differential Abundance Analysis. Differential abundance analysis was conducted on 
infected infants with high and low inflammation levels to identify changes in the abundance 
of shared genera. In this analysis, infected infants with low levels of inflammation were used 
as the reference group. This analysis was carried out using the DESeq2 package (18). All p-
values were adjusted using the Benjamini–Hochberg procedure via the DESeq2 package (18). 
Genera exhibiting significant abundance changes from the volcano plot were further 
visualized using a bar chart, highlighting both upregulated and downregulated genera. The 
visualization of data was performed using ggplot2 (21). Differential abundance analysis is 
detailed in the supplementary R script (RScript 4). 
 
Core Microbiome Analysis. Core microbiome analysis was conducted using the microbiome 
R package (24). Relative abundance for each inflammation group (high vs. low) was derived 
from the phyloseq object. The core microbiome analysis was performed using the microbiome 
package, with detection and prevalence thresholds set to 0 and 0.7, respectively (24). A Venn 
diagram was then created using ggVennDiagram to illustrate the overlap of core taxa between 
the two groups, quantifying both the number of shared taxa and their corresponding 
percentages (21). Core microbiome analysis is detailed in the supplementary R script (RScript 
5). 
 
Functional Analysis using PICRUSt2.  To conduct functional analysis, the DESeq2 package 
in R was utilized (18). Data was processed using the DESeq2 algorithm, specifically focusing 
on differential abundance and expression across high and low inflammation levels. Statistical 
evaluation of the microbiome data identified pathways and enzymes where p-values < 0.05 
were considered statistically significant. For enzymes, only those with a log2 fold change > 
4 were included. Both significant pathways and enzymes were annotated using the MetaCyc 
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database (26). The visualization of data was performed using ggplot2. Functional analysis is 
detailed in supplementary R script (RScript 6 & RScript 7).  
 
RESULTS 

Inflammation did not influence the microbial diversity of the infant gut microbiome.  
To determine whether there was a difference between stages of infection (early 
convalescence, late convalescence, and incubation) and levels of inflammation (high or low) 
in anemic infants, we carried out an alpha and beta diversity analysis using the Shannon 
Diversity Index and Weighted Unifrac analysis respectively. The Shannon Diversity Index 
revealed that there was no difference in diversity between early convalescence, late 
convalescence, and incubation infection stages (Figure 1A), nor was there a difference 
between high and low inflammation levels in anemic infants (Figure 1B). Due to the lack of 
alpha diversity difference between each infection status, all infection stages were grouped 
into one “Infected” category for the beta diversity analysis. Weighted Unifrac analysis and a 
resulting PCoA plot demonstrated that there was no difference in diversity between low and 
high inflammation infected anemic infants (Figure 2). Our findings indicate that the diversity 
of fecal microbes remains consistent throughout active infection and is not notably influenced 
solely by the stages of infection.  

 

 

FIG. 1 No significant difference in alpha diversity across different stages of infection and adjusted ferritin status in 
12-month-old infected anemic infants.  A. Fecal microbial alpha diversity using Shannon's Index among patients at 
different infection stages: early convalescence (orange), late convalescence (green), and incubation (blue). No significant 
difference was observed (NS) across stages (Kruskal-Wallis test). B. Fecal microbial alpha diversity was measured using 
Shannon's index across patients with different inflammation levels: low (red) and high (blue). No statistically significant 
differences observed among groups (Wilcoxon rank test). 
 
 
 

FIG. 2 No significant difference in beta diversity 
between 12-month-old infected anemic infants with 
high and low inflammation levels. Principal 
Coordinates Analysis (PCoA) plot based on Weighted 
UniFrac distances showing the beta diversity between 
12-month-old infants with high and low inflammation 
levels. Samples are categorized into two groups: low 
inflammation (red) and high inflammation (blue). Each 
point represents the microbial community of an 
individual infant. Ellipses represent the 95% confidence 
intervals. No statistically significant differences 
between the two groups as determined by 
PERMANOVA.  
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Bifidobacterium exhibited decreased abundance in infected anemic infants with 
high inflammation. Differential abundance analysis was performed on the subset of infected 
anemic infants (n = 25) using DESeq (18) and represented in a volcano plot (Figure 3A) and 
bar chart (Figure 3B). Among the various genera, 19 demonstrated significant upregulation 
in the gut microbiota of infected anemic infants with high inflammation levels compared to 
those with low inflammation levels, while only Bifidobacterium demonstrated significant 
downregulation in the gut microbiota of infected anemic infants with high inflammation 
levels. Collectively, this suggests a drastic shift in microbial composition within the gut 
environment as a result of inflammatory levels. 

 

Alterations in gut microbiota composition correspond to inflammation status in 
infected anemic infants. To assess whether there was a difference in the abundance of 
bacterial genera between low and high inflammation states in infected anemic infants, the 
relative abundance of bacterial taxa was explored (Figure 4). Across our samples, we 
observed a general increase of species within the Ruminococcus, Bacteroides, Enterococcus, 
Escherichia-Shigella, and Lactobacillus genera in patients characterized with high 
inflammation status relative to low inflammation status (Figure 3). Additionally, 
Bifidobacterium appeared to be less abundant in patients with a high inflammation status, 
which corresponds to the findings of our differential abundance analysis (Figure 4). This 
suggests a potential dysbiosis associated with inflammation in infected anemic infants. 

Distinct gut microbial profiles in low and high inflammation states of infected 
anemic infants. A core microbiome analysis was conducted to determine which abundant 
taxa of the gut were unique or common to low and high inflammation conditions (Figure 4B). 
Present in at least 70% of the samples, three amplicon sequence variants (ASVs) were found 
to be unique for low inflammation status whereas two ASVs were found to be unique for high 
inflammation status. Additionally, four shared ASVs suggest a degree of similarity in the 
microbial composition of both conditions. Further examination of these taxa (Table 1), 
revealed Lactobacillus mucosae and an unclassified species within the Enterococcus genus, 
are solely associated with the low inflammation condition. Notably, the presence of 
Bifidobacterium bifidum also characterizes this less inflamed state. In contrast, an 
uncharacterized species within the Faecalibacterium and Blautia genera marks the high 
inflammation profile (Table 1). Among the taxa shared between patients with high and low 
inflammation, Bacteroides fragilis, Ruminococcus gnavus and a species within the 
Escherichia-Shigella genus was identified. Interestingly, an undefined species within the 
Bifidobacterium genus was also identified among the taxa common to both inflammation 
conditions (Table 1). Overall, the distinct presence of specific bacterial taxa in low and high 

FIG. 3 Distinct Microbial Profiles in Low vs. High Inflammatory States of the Gut A. Volcano plot highlighting significant 
and non-significant differential genera expression with fold change in infected anemic patients with high inflammation to low 
inflammation. Significantly upregulated or downregulated genera are shown in blue (Adj P < 0.01 and |fold change| > 2) and not 
significantly upregulated and downregulated genera are shown in red. B. Genus-Level Differential Expression Profile. Bar chart 
indicates fold changes in significant genus-level expression in infected anemic patients with high inflammation relative to low 
inflammation. Upregulated genera are shown in green, and the sole significantly downregulated genus is displayed in orange. 
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inflammation profiles suggests their potential role in the modulation of gut inflammation 
within infected anemic patients.  
 

 

 
TABLE. 1 Distribution of core microbiome in infected anemic infants classified by inflammation status. 
"Unique Low Inflammation" and "Unique High Inflammation" groups list taxa exclusive to infants with low and high 
inflammation markers, respectively. "Shared" indicates taxa found across both inflammation categories. Genera and 
species were identified using a 0% detection threshold and a 70% prevalence criterion, as depicted in the Venn diagram 
of Figure 2B. Instances where the dataset did not contain species-level classification within the dataset are denoted by 
"NA". 

Genus Species Group 
Lactobacilus Lactobacilus mucosae Unique Low Inflammation 
Enterococcus NA Unique Low Inflammation 

Bifidobacterium Bifidobacterium bifidum Unique Low Inflammation 
Bacteroides Bacteroides fragilis Shared 

Escherichia-Shigella NA Shared 
Bifidobacterium NA Shared 
Ruminococcus  Ruminococcus gnavus Shared 

Faecalibacterium NA Unique High Inflammation 
Blautia NA Unique High Inflmmation 

 
High inflammation triggered the upregulation of metabolic pathways/enzymes 

signaling stress and immune activation. Functional analysis was performed using 
PICRUSt2 (27) to compare metabolic pathways and enzymatic expression profiles for 
infected anemic infants with high and low inflammation (Figure 5). From this, numerous 
pathways and enzymes involved in energy production and immune activation were 
significantly upregulated in infected anemic infants with high inflammation relative to 
infected anemic infants with low inflammation, indicating substantial metabolic shifts. Some 
of the top enriched pathways in the high inflammation group included degradation pathways 
for energy such as L-histidine degradation II, glycogen degradation II, and nicotinate 
degradation I. Additionally, notable upregulated enzymes included proton-exporting ATPase, 
suggesting increased energy metabolism and potential immune activation in response to 
higher inflammation levels. 

 
 

FIG. 4 Genera Abundance Variation and Exclusive Core ASVs in Anemic Patients with Low Inflammation. A. 
The relative abundances of key bacterial genera in infected anemic patients with high and low inflammation levels. B. 
Venn diagram highlights the exclusivity of two core ASVs to the high inflammation category, four that are shared amongst 
high and low inflammation groups, and three in the low inflammation category. Analyses were done using a 0% detection 
threshold and 70% prevalence. 
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DISCUSSION 

Infection stage and inflammation levels in anemic infants did not alter gut microbial 
diversity. Initial investigations aimed to use alpha diversity metrics to assess if microbial 
diversity across stages of infection and inflammation levels changed in anemic infants. 
However, no significant difference was seen between early convalescence, late 
convalescence, and incubation stages, nor when comparing high and low inflammation status. 
This is inconsistent with previous findings, which found an association between inflammation 
and alterations in both alpha and beta microbial diversity (28). It is plausible to attribute this 
discrepancy to the potential presence of gut microbiome functional redundancy whereby 
various microbes can fulfill similar roles to maintain stability against pathophysiological 
changes (29). Additionally, confounding variables such as the type of infection experienced 
by anemic infants is not clearly identified in the metadata, constraining possible deductions 
to the observed non-significance. Furthermore, the sample size of anemic infants in the 
incubation infection stage was small (n = 2), hindering the generalizability and 
representativeness of the group (12). As such, a larger sample size is necessary to validate 
our findings. Given this, downstream analyses grouped samples from all infection stages into 
one category, focusing on infants with infected anemic status.   

Differentially abundant genera are related to inflammation levels in infected anemic 
infants. In our differential abundance analysis, Bifidobacterium was the only genus 
significantly downregulated which is distinct from the other genera that were significantly 
upregulated in infants with high inflammation (Figure 3B). Bifidobacterium is known for its 
anti-inflammatory properties, therefore this pattern may reflect a microbial shift towards a 
proinflammatory state within the gut environment of infected infants (30). The decline of 
Bifidobacterium in infected infants may exacerbate inflammatory processes which could 
potentially contribute to a more hostile gut environment (31). 

The core microbiome analysis (Figure 4B) and core microbiome genus table (Table 1) 
indicated 3 unique genera found for low inflammation: Lactobacillus, Enterococcus, and 
Bifidobacterium, and 2 unique genera for high inflammation: Faecalibacterium and Blautia. 
Lactobacillus, Enterococcus, and Bifidobacterium are all known for their probiotic and anti-
inflammatory properties (32, 33, 34).  

On the other hand, Faecalibacterium and Blautia, which are seen in the microbiota of 
high inflammation patients are known for providing anti-inflammatory properties and 
production of butyrate (35, 36). Butyrate is a short chain fatty acid that inhibits pro-
inflammatory immune cells and activates anti-inflammatory immune cells, suggesting that 

FIG. 5 Metabolic Pathways and Enzymes Significantly Upregulated in Infected Anemic Infants with High vs. Low 
Inflammation Levels. A. Ranked log2 fold changes in metabolic pathways for infants with high versus low inflammation levels 
with color depth indicating p-value significance. B. Significant log2 fold changes in enzyme expression, with darker hues 
indicating higher significance (p < 0.05), displayed for enzymes meeting the threshold (log2 fold change ≥ 4). 
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high inflammatory conditions promote the growth of these bacterial species to counteract 
inflammation (37).  

Inflammation is linked to the upregulation of certain metabolic pathways and 
enzymatic expressions. A notable pattern of upregulation in both metabolic pathways and 
enzymatic expressions suggests a system adapting to inflammation's energetic and defensive 
demands. Increased metabolic activity was observed, with pathways related to the 
degradation of carbohydrates and amino acids experiencing a marked increase in expression 
(Figure 5). Upregulated glycogen and starch degradation pathways play an important role in 
rapidly mobilizing glucose stores—a critical fuel for the energy-intensive processes engaged 
by immune cells (38). Similarly, the increased expression of pathways involving L-histidine 
and L-lysine fermentation may indicate an elevated turnover of amino acids, likely providing 
for the increased demand for protein synthesis and additional substrates for gluconeogenesis 
during times of stress (39). Furthermore, the upregulation of the ATPase enzyme is indicative 
of an attempt to meet the high ATP demand characteristic of inflammatory states (40). 
ATPases, by hydrolyzing ATP, provide energy driving several cellular processes, from signal 
transduction to macromolecule synthesis. Their upregulation suggests an effort to boost ATP 
synthesis to potentially fuel the activities of the immune response, including the generation 
of immune mediators, cell proliferation, and migration (41).  

Alongside these metabolic adaptations, the upregulation of protective mechanisms 
suggests a response to inflammation-induced stress. This is observed by the increased 
expression of the enzyme Gamma-L-glutamyl-butirosin B gamma-glutamyl cyclotransferase 
(Figure 5) which is involved in the biosynthesis of butirosin B, an aminoglycoside antibiotic 
that combats a wide range of bacterial infections (42). The heightened activity of this 
cyclotransferase in bacteria can be indicative of a response toward countering inflammatory 
processes and infection (43).  

 
Limitations Our study presented several methodological and analytical limitations. First, the 
use of a small sample size limits the statistical power of the analyses and restricts the 
generalizability of our findings (44). Additionally, the dependency on single time point 
collection of stool samples fails to capture the day-to-day variability in the gut microbiome, 
which is especially variable in infants due to rapid changes in diet and immune development 
(12). This limitation may result in a perspective that is not reflective of the dynamics of the 
gut microbiome in relation to anemia and inflammation. Furthermore, ferritin level was used 
as the sole indicator of inflammation, however inflammation can be influenced by other 
factors such as presence of pathogens, illness, etc. that were not noted in the study (45). This 
approach may obscure other inflammatory pathways influential in pediatric anemia and gut 
microbiota interactions. Additionally, the study cannot provide information on species 
specificity, as samples were only sequenced to the genus level, limiting the precision of each 
analysis and potentially obscuring significant species-specific relationships to host health 
outcomes. Lastly, the functional analysis using PICRUSt2 remains a predictive approach and 
cannot be fully substituted for direct measurements of microbial metabolites or expression 
(46). Thus, conclusions about metabolic pathways and enzymatic activity are based on 
association rather than direct evidence of activity, which may not accurately reflect the true 
biological processes that occur within the gut microbiome. 
 
Conclusions The objective of our study was to assess the impact of inflammation in anemic 
infants through the characterization of the gut microbiome. Although no significant 
differences in alpha and beta microbial diversity were observed between high and low 
inflammation states, differential abundance analysis identified a significant downregulation 
of the Bifidobacterium genus under high inflammation conditions. Core microbiome analysis 
highlighted the distinct genera in low inflammation levels (Lactobacillus, Enterococcus, and 
Bifidobacterium) and high inflammation levels (Faecalibacterium and Blautia). Furthermore, 
such microbial shifts were accompanied by the upregulation of stress and immune response-
related pathways. Despite the non-significant finding of infection stages and inflammatory 
levels of anemic infants on gut microbial activity, the study demonstrates that inflammation 
in anemic infants likely influences the growth of specific bacterial genera and upregulates 
certain metabolic pathways and enzymatic expressions. 
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Future Directions Following this paper, studies regarding interventions, cross-population 
comparisons, and predictive modeling can be undertaken to gain a deeper understanding and 
application of the data surrounding infant anemia. Firstly, given the significant role that 
specific gut microbes, such as Bifidobacterium, may play in inflammatory processes and 
anemia in infants, intervention studies using probiotics or prebiotics could be a promising 
direction for future research. Targeting these interventions on the key microbial genera 
identified in this study could potentially modulate the gut microbiome in ways that lower 
inflammation and improve anemia outcomes.  For example, preliminary studies in model 
organisms could be conducted to assess the efficacy and safety of interventions aimed at 
administering probiotics that boost beneficial bacteria or prebiotics that selectively promote 
their growth. These initial investigations could provide insights into the potential mechanisms 
and effects of such treatments before advancing to clinical trials in human subjects. 
Subsequently, clinical trials could be designed to evaluate the therapeutic potential of these 
interventions, closely monitoring microbial changes as well as changes in host metabolic and 
inflammatory indicators. 

Our findings underline the importance of the gut microbiome in health outcomes related 
to inflammation and anemia. However, it is unclear how dietary, environmental, and genetic 
factors affect these relationships. Thus, future research should aim to investigate how the gut 
microbiota reacts to anemia and inflammation in diverse populations, including various age 
groups, ethnicities, and geographical regions. These explorations could help identify whether 
the trends seen in our cohort are general or exclusive to certain demographics. This could 
result in more personalized approaches to treating anemia and related conditions, potentially 
continuing targeted dietary or microbial therapies tailored to specific populations or regions. 

Anemia and its complications pose significant health challenges, which are often made 
worse by inflammation. In relation to our current findings, there is a need to develop robust 
predictive models that integrate a broader array of metabolic indicators along with microbial 
composition data. These models could significantly improve early diagnosis and risk 
assessment, allowing for preventative or mitigative interventions. By incorporating advanced 
statistical and machine learning techniques, researchers could analyze complex datasets to 
predict the onset and severity of anemia. Furthermore, understanding how gut microbes 
interact with various host metabolites could discover new pathways and intervention, offering 
a systems-level perspective on the treatment of pediatric anemia. In clinical settings, these 
predictive tools would be invaluable in enhancing the ability to tailor interventions based on 
individual microbial and metabolic profiles. 
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