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SUMMARY  Despite decades of anti-smoking initiatives, tobacco remains one of the most 
commonly used addictive substances in the world. The use of tobacco has strongly been 
associated with a variety of cardiovascular and respiratory illnesses. Due to their perceived 
safety over traditional cigarettes, e-cigarettes have surged in popularity in the past five years, 
especially among the younger populations. However, no consensus has been reached 
regarding their impact on human health. This study used a bioinformatic approach to study 
the association of traditional cigarette and e-cigarette usage with the oral microbiome in a 
cohort of 30 individuals from Houston, Texas, USA. Although no significant differences were 
observed in core diversity metrics, our findings revealed significant compositional changes 
in the oral microbiome resulting from smoking when comparing the oral microbiota of 
cigarette or e-cigarette users with non-smokers. Taxonomic analysis suggests that cigarette 
smoking increases the abundance of pathogenic genera associated with respiratory and 
periodontal diseases, while e-cigarette smoking upregulates bacterial species that contribute 
to oral and respiratory health issues. These results underscore the need for more 
comprehensive studies to confirm the effects of smoking on oral microbiota in a more diverse 
population and elucidate the broader effects of the noted dysregulations on overall health. 
 
 
INTRODUCTION 

espite the anti-smoking policies and campaigns that have run consistently for the last 
half century, tobacco remains one of the most abused drugs in the world, a cycle that 

is propagated by the addictive qualities of its active ingredient, nicotine (1). This is 
problematic as the ingestion of tobacco smoke and its constituents exposes users to several 
harmful chemicals, including arsenic, carbon monoxide, and formaldehyde (1). Long-term 
ingestion of these agents can lead to a host of ailments in patients, ranging from cancers to 
pulmonary disorders such as chronic obstructive pulmonary disease (COPD) which occur due 
to the mutagenic and pro-inflammatory effects of tobacco constituents and the physical 
damage caused by inhalation of the smoke (1). 

Due in part to the fear of the health complications of tobacco cigarettes (C), e-cigarettes 
(EC), colloquially referred to as “vapes”, have taken a large segment of the nicotine-product 
market by being marketed as a healthier alternative to traditional tobacco cigarettes (2). While 
ECs are believed to be safer for consumption when compared to Cs given that EC 
compositional compounds are better controlled and typically FDA-approved GRAS 
(“generally regarded as safe” for consumption) compounds, many studies have correlated EC 
use with negative health outcomes when compared to a non-smoking population (3-5). For 
example, EC usage has been associated with higher incidences of asthma, cardiovascular 
disease, respiratory disease, and myocardial infarction (3).  

Despite the mounting evidence of the negative impact of EC usage, how exactly it impacts 
the diversity and composition of oral microbiota compared to Cs and non-smokers remained 
unanswered (4–8). Even though small studies on how C and EC use affect the gut and oral 
microbiomes of humans have been conducted by many researchers, the results have not been 
conclusive, particularly due to the lack of consensus in the field. While some found no 
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significant differences in the alpha and beta diversity of the oral microbiome of EC users 
compared to non-smoking control, others found that EC usage lowers alpha diversity in saliva 
samples (4, 9, 10). This inconsistency can be exacerbated by the lack of consensus in the 
comparison metrics. Some studies compared smokers versus nonsmokers without clarifying 
whether smokers are EC or C users, while some studies did not compare ECs with Cs (11). 
Therefore, our study aims to compare both ECs and Cs using non-smokers as a control, 
hoping it would elucidate the effect of vaping and tobacco on oral microbiome diversity.   

Furthermore, smoking can also alter the oral microbiome composition. Previous research 
has shown that C smokers tend to have an increased abundance of anaerobic bacteria and 
gram-negative bacilli in the oral microbiota compared to non-smokers (12). However, similar 
work in EC users has suggested mixed consequences, potentially due to heterogeneity in the 
chemical compositions used by individual manufacturers such as the presence or absence of 
acetaldehyde, acrolein, formaldehyde, and other additives in the nicotine-containing e-fluid 
(13). Nonetheless, given that bacterial fitness varies based on environmental stimuli such that 
different species will adapt to different environmental niches, it is expected that the distinct 
chemical composition of C and EC would alter the composition of the oral microbiota. 

Stewart et al. have investigated the effect of EC and C smoking on the gut and oral 
microbiota using non-smokers (NS) as a control(9)(9). C users had a significantly different 
oral and gut bacterial composition compared to EC users, with increased relative abundance 
of Prevotella and decreased Bacteroides, while no significant difference was found between 
the alpha and beta diversity of EC users and non-smoking controls. However, since they 
collected cross-sectional fecal, buccal swabs, and saliva samples, their investigation has not 
been focused entirely on the oral microbiome nor did they discuss the specific oral bacterial 
genera that were altered by EC and C. Therefore, to investigate if true differences exist in oral 
microbial population and diversity between EC, C, and NS, we decided to continue the study 
by Stewart et al. by using their Houston cohort to perform additional analyses such as core 
microbiome analysis, indicator taxa analysis, DESeq2, and PICRUSt that were not included 
in their original study (9). We hypothesized that while both C and EC usage would 
significantly alter the relative abundance of microbiota in the saliva, the change would be 
driven by differences in unique bacterial genera in each group; we also expected that the 
microbial species selected for C and EC usage would be reflective of their abilities to degrade 
the distinct harmful chemicals present in each cigarette type. To accomplish this, data was 
processed using QIIME2 and R, leading to insights into changes in microbiome composition 
at the ASV level. In addition, we conducted PICRUSt analysis to look at alterations of 
metabolic pathways. We have discovered that C and EC usage did not change the oral 
taxonomic alpha and beta diversity metrics but significantly altered composition and 
functional diversity. 
 
METHODS AND MATERIALS 

Dataset description. The dataset used in this paper originated from a study by Stewart et al. 
comparing the effects of tobacco smoke and electronic cigarette vapour exposure on the gut 
and oral microbiota (9). The authors enlisted 10 C smokers, 10 EC smokers, and 10 NS 
persons from the Houston area. For EC users the participant inclusion criteria involved a 
minimum of 6 months of continuous daily EC while for cigarette smokers it was set at testing 
at a level 4 or greater on the Fagerstrom scale for nicotine dependence as well as a minimum 
intake of 10 cigarettes per day (9). The biometric characteristics of participants in the smoking 
status groups were also matched with regards to sex, age, diet, height, weight, and ethnicity 
(9). The authors collected saliva, buccal swabs, and fecal matter from them alongside 
metadata information pertaining to their smoking habits, demographic information, and 
biometric characteristics.   
 
Data processing in QIIME2. The V4 regions of the 16S rRNA gene of oral samples were 
amplified and sequenced on an Illumina MiSeq instrument using the 515F and 806R barcoded 
Illumina adapters. The metadata and corresponding 16s rRNA sequences from our dataset 
were imported into the Quantitative Insights Into Microbial Ecology2 (QIIME2) software 
(version 2023.7.0) (14). Raw sequence reads were demultiplexed for downstream processing 
and analysis and sequence quality control and denoising were performed using the Divisive 
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Amplicon Denoising Algorithm 2 (DADA2) (15). Forward reads were truncated to 240 base 
pairs (bp) and reverse reads were truncated to 190 bp to maintain high sequence quality while 
removing low-quality regions. An ASV table was generated by clustering similar sequences 
into ASVs. This table was used for downstream analysis, including alpha and beta diversity 
analysis, taxonomic classification, and functional analysis.  
 
Data processing using R Studio. All bioinformatic analyses were done in R (version 4.3.2), 
and basic data wrangling was done using the Tidyverse (version 2.0.0) and Phyloseq packages 
(version 1.46.0). The ggplot2 package (version 3.5.0) was used for all plots (12). We 
performed filtration and rarefaction steps by first removing mitochondrial and chloroplast 
DNA sequences, as well as any row containing “NA” or “not applicable” values. We then 
removed any ASVs that have less than 5 counts in total, which represent low abundance taxa. 
We also removed samples with fewer than 100 reads as a quality control. A Rarefaction depth 
of 95,000 was used based on alpha rarefaction plots. Finally, we created a phyloseq object 
using unrarefied data only containing the saliva swab samples for downstream analysis.  
 
Alpha and beta diversity analysis. Based on the alpha-rarefaction curve we generated, a 
sampling depth of 95,000 was selected to maximize sample richness while maintaining a 
sufficient number of samples for diversity matrix statistical analysis with the Vegan package. 
Alpha diversity of the saliva swab samples of different smoking habits was assessed through 
the Observed, Chao1, and Faith’s phylogenetic distance metrics in R (16, 17). The Wilcoxon 
rank sum test was performed to test for significance (p<0.05) using the ggpubr package (18). 
Subsequently, beta diversity between each cohort was assessed by Bray-Curtis Dissimilarity. 
To calculate statistical significance, the results of beta diversity analysis were evaluated by 
pairwise permutational multivariate analysis of variance.  
 
Core microbiome analysis. Core microbiome analysis was performed on each smoking 
category at the species level using the microbiome package (19). First, absolute abundance 
was converted to relative abundance. Core microbiome was then calculated using a 
prevalence threshold of 0.05 and detection threshold of 0.001 and visualized as a three-way 
Venn diagram using the ggVennDiagram package (20, 21). 
 
Indicator Taxa Analysis. Indicator species analysis was conducted in R using the 
indicspecies package (19, 22–24). Taxonomic data was grouped at the genus level. 
Multipattern analysis was performed to determine indicator genera that were specific to C 
smokers, EC smokers and non-smokers. Only the top two indicator genera with the highest 
indicator values were reported in order to identify the most relevant and high-confidence 
genera. 
 
DESeq2. Taxonomic differential abundance analysis between C users versus NS as well as 
EC users versus non-smokers was performed using the DESeq2 package (19, 25). Differential 
abundance was visualized in volcano and bar plots using non-smokers as the reference group. 
 
PICRUSt Functional Analysis of Pathway Inference and Differential Expression. 
Functional analysis of predicted dysregulated pathways was performed using PICRUSt 2.0 
(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) (26–
30). The QIIME2 package was first used on the rarefied feature table to remove features with 
a frequency ≤ 5 to enable efficient downstream processing. Subsequently, the PICRUSt2 
Qiime plugin was then used to perform functional analysis using the SaTé-Enabled 
Phylogenetic Placement (SEPP) and Maximum Parsimony (MP) hidden state prediction 
algorithms. The KEGG Orthology (KO), MetaCyc pathway abundance (pathabun), and 
Enzyme Commission (EC) outputs were converted to human readable tab-separate values 
(tsv) files using Qiime export tools. From there, an R code package for PICRUSt analysis and 
DESeq2 was used on the KO output file to visualize dysregulated pathways in the tobacco 
smoking and vaping cohorts using the non-smoking group as a baseline. Overall, a heatmap 
and Log2-fold-change bar plots of pathways with statistically significant dysregulation (p ≤ 
0.05) were produced. 
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RESULTS 

Smoking status did not correlate with changes in alpha and beta diversity measures. 
To investigate if smoking status and the type of smoking have an impact on the oral microbial 
diversity of the American population, we first sought to determine whether alpha diversity 
differed between C smokers, EC smokers and NS. We performed alpha diversity analysis 
employing three metrics: Observed richness, which takes into account the number of different 
species observed within the saliva sample of our subject; Chao1 index, which is useful for 
accounting for low abundance ASUs; and Faith’s phylogenetic distance, which factors in the 
phylogenetic distances between species. Despite our initial hypothesis, we found no 
significant differences in all alpha diversity metrics examined when comparing C smokers, 
EC smokers and NS (Wilcoxon rank-sum, p > 0.05) (Fig. 1). Our Bray-Curtis dissimilarity 
analysis also showed three different smoking status groups clustered similarly (Fig. S1).  

 

C and EC users had unique oral bacterial species. Subsequently, we explored the three 
groups at the individual species level. We generated a three-way Venn diagram to compare 
the core microbiomes of smokers and non-smokers. There were 142 species (28%) common 
to all three smoking statuses (Fig. 2). Interestingly, there was a greater proportion of core  

 
species shared between C and EC users (10%) than between NS and either C or EC users (5% 
and 4% respectively), supporting the hypothesis that EC usage alters the oral microbiome 
(Fig. 2). However, further analysis of the taxonomic bar graph analysis revealed no phyla 

FIG. 1 No significant difference in microbial diversity metrics between smokers, EC smokers, and non-smokers. 
Alpha diversity measures using (A) Observed, (B) Chao1, and (C) Faith’s phylogenetic distance metrics were not 
statistically different (p > 0.05) between C (cigarette users, red, n=10), EC (e-cigarette users, blue, n=10), NS (non-
smokers, green, n =10) as per Wilcoxon rank-sum test. 
 
 

FIG. 2 Relative proportions of 
compared core microbiomes showed a 
significant overlap of core taxa 
between smokers and non-smokers. 
Core microbiomes were identified using 
the following parameters: minimum 
abundance of 0.1% and minimum 
prevalence of 5%. The core taxa were 
resolved at the species level. Numbers 
represent the percentage or frequency of 
occurrence of particular microbial taxa 
across multiple samples within a dataset 
that meet the minimum abundance and 
minimum prevalence cutoff. 
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unique to any smoking status, indicating that the 127 species (25%) unique to C smokers and 
79 species (16%) unique to EC users were below the phylum level (Fig. 3).  

 
Certain species were correlated with respective smoking status. We conducted an 

indicator species analysis to assess the relative abundance of microbial species and their 
associations with each smoking status. Taxonomic data were grouped at the genus level, and 
only genera with indicator values above 0.5 and a p-value below 0.05 were considered to be 
specific to the smoking group of interest. Eight genera were reported to be specific to cigarette 
smokers, two genera were specific to EC smokers, and four genera were specific to NS (Table. 
S1). The two indicative species most specific to each smoking status are summarized in Table 
1. There are no overlapping taxa at the genus level, indicating that smoking and different 
forms of smoking may promote the growth of different taxa in the oral microbiome. 
 
TABLE. 1 Indicator taxa analysis shows unique genus that are most unique to in each 
population with different smoking status group. Table demonstrates microbial genera 
that are most correlated with their respective smoking status. Indicator species status is 
assigned when P < 0.05, and only the two genera with highest indicator value are displayed. 

Smoking Status Genus & Species p-value Indicator Value 
Exclusive to C 
Smokers 

Clostridiales bacterium 0.005 0.815 
Tannerella forsythia 0.025 0.761 

Exclusive to EC 
Smokers 

Staphylococcus sp. 0.035 0.613 
Prevotella sp. 0.045 0.569 

Exclusive to NS Eubacterium yurii 0.01 0.682 
Amnipila sp. 0.02 0.665 

 
EC usage enriched more oral microbial species than C usage. We have conducted 

differential expression sequence (DESeq) analysis, which determines how ASVs from our 
groups of interests have increased or decreased in abundance relative to a reference, to assess 
the impact of C and EC smoking on the composition of the oral microbiome. The NS control 
was used as the reference for this analysis, and differential abundances were visualized as 
volcano plots. P-adjusted values are considered to be significant when smaller than 0.01. Both 

FIG. 3 Cigarette and EC 
usage demonstrate no 
obvious differences in the 
taxonomic composition of 
the oral microbiome at 
the phylum level. Bars 
show the relative frequency 
of microorganisms at the 
phylum level for individual 
samples. Colors indicate 
different phyla. 
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C and EC smoking significantly altered the composition of the oral microbial ASVs and 
correlated with differences in the abundances of certain microbial species (Fig. 4B-D). 
Specifically, cigarette smoking is associated with the enrichment of certain ASVs while 
reducing the abundance of others. It is correlated with a significant increase of the 
Streptococcus genus while a reduction in the prevalence of genera like Rothia (Fig. 4B). 
Compared with cigarettes, EC smoking seemed to select for more microbial taxa. Genera like 
Lactobacillus were enriched with a more than 5-fold increase in abundance, while 
Streptococcus experienced a significant decrease in abundance (Fig. 4D). Again, this 
confirms that EC and cigarette smokers have a unique profile of oral microbiome composition 
compared to non-smokers. 

 

Multiple oral metabolic pathways were predicted to be differentially enriched in C 
and EC smokers compared to NS. PICRUSt2 analysis was done to predict and compare the 
metabolic pathways active in the saliva microbial community of smokers compared to non-
smokers based on the species present (Fig. 5). This predicted that in cigarette smokers, the 
pathways for chlorosalicylate degradation and glycolysis IV were notably enriched while the 
pathway for photorespiration was downregulated in the saliva microbial population of 
smokers compared to non-smokers (Fig. 5A). Furthermore, repeating the analysis in EC 
smokers compared to non-smokers showed that while chlorosalicylate degradation was 
predicted to be upregulated as it was in cigarette smokers, EC smokers were expected to have 
significant downregulation of the pathways for 3-phenylpropanoate, p-cymene, and p-cumate 
degradation (Fig. 5B). 
 
 

 

FIG. 4 Cigarette and EC smoking correlates with differences in oral microbial composition compared to non-smokers. 
Volcano plot demonstrating the log 2 fold change in the abundance of ASVs for the C and EC smoking populations relative to 
the non-smoking controls. (A, C). Bar plots showing how EC and C smoking correlates with taxonomic abundance at the genus 
level (B, D). Padj value is considered significant when for interpretability of the plot. (D) ASVs are considered to be significantly 
different when Padj < 0.01 and a log2fold change > 2.5 (B) or 3 (D), or a Padj < 1*10^-14 and a log2fold change > 2.5 (A) or 3 
(C).  
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FIG. 5 Tobacco and Electronic Cigarette Smoking May Dysregulate Metabolic Pathways Active in the Salivary 
Microbial Community. Through PICRUSt2 analysis the metabolic pathways present in the oral microbiota of C 
smokers (A) and EC smokers (B) were predicted and compared to that of non-smokers. 
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DISCUSSION 

The human oral cavity provides a habitat for more than 600 microbial species, which 
collectively form what is known as the oral microbiome (31). Oral microbial ecology can be 
perturbed when exposed to the numerous toxic chemicals of both C and EC smoke (32–34). 
Prolonged exposure to these toxicants can result in the loss of beneficial species, which may 
allow the colonization of pathogenic microbes (35). As multiple studies have demonstrated 
how dysbiosis of the oral microbiome is correlated with many cardiovascular and respiratory 
diseases (36), it is important to elucidate the impact of cigarette and EC smoking on the 
diversity, composition, and abundance of organisms of the oral microbiome. 

Interestingly, we did not find any significant differences in the alpha diversity of the oral 
microbiome of C smokers, EC smokers, and NS. Furthermore, our beta diversity analysis 
suggested that different smoking statuses did not change oral microbiome composition 
enough to allow for the formation of distinct clusters. This does not align with findings 
reported by Wu et al. and Yu et al., where they have discovered that cigarette smoking is 
correlated with a significant reduction of oral microbiome alpha diversity (11, 36). 
Additionally, Pfeiffer et al. showed that cigarette smoking seemed to be related to increases 
in overall oral microbial diversity (37), while Antonello et al. discovered no significant 
changes in smoking on salivary microbiota (38). A possible explanation for the mixed results 
is the heterogeneity of human microbiomes related to confounding variables like geographical 
location, lifestyle, age, and sex. The studies listed above are conducted in different regions 
including Germany, USA, Italy, and Iran, and in different populations with very different 
lifestyles. This calls attention to the need to control for confounding variables in future studies 
that can result in drastic changes in oral microbial diversity and composition. If microbiome 
differences still do not exist after controlling for these confounding variables, then we can be 
more confident in concluding that cigarette usage does not alter oral microbiome alpha and 
beta diversity despite the heterogeneity of human microbiomes. 

Despite not finding significant differences in alpha or beta diversities between our groups 
of interest, we have noted differences in the taxonomic composition and relative abundance 
of the oral microbiome concerning C and EC usage. The differences in bacteria composition 
are unique to the species level. Specifically, indicator species analysis shows that C usage 
exclusively correlated with high levels of the Clostridiales bacteria and Tannerella forsythia, 
which agrees with our DESeq analysis showing that smoking significantly altered the 
composition of oral microbial ASVs. Clostridiales are not typically found in the normal oral 
flora and can have severe consequences when inhaled including the development of 
necrotizing pneumonia, a serious condition characterized by the rapid destruction of lung 
tissue, often leading to respiratory failure and potentially life-threatening complications (39). 
It is also known to cause diarrhea and colon inflammation (40). Additionally, Tannerella 
forsythia, a bacterium usually absent in healthy mouths, is frequently observed in patients 
with periodontal disease (41).  

EC usage, on the other hand, exclusively correlated with high levels of the Staphylococcus 
and Prevotella genera. Staphylococcus is typically not found in normal oral flora and can pose 
various oral health concerns such as the development of abscesses and gingivitis, which can 
lead to discomfort and gum disease (42). Additionally, it can potentially cause pneumonia if 
it gets into the lungs (43). On the other hand, Prevotella is commonly found in the mouth. 
When combined with poor oral hygiene practices, however, it can contribute to the formation 
of plaque (44). The Eubacteria yurii was exclusively correlated with the non-smoking 
population. As E. yurii plays a role in the defence against the colonization of pathogenic 
microorganisms (45), the loss of E. yurii in TC and EC users may increase their likelihood of 
infection and result in other health consequences.  

Interestingly, we found that smoking had distinct effects on different functions of 
bacteria. For instance, in the case of C smoking, we observed an upregulation of pathways 
related to chlorosalicylate degradation and glycolysis IV, while photorespiration was 
downregulated. On the other hand, EC smoking resulted in the upregulation of 
chlorosalicylate degradation, but downregulation of pathways associated with 3-
phenylpropanoate, p-cymene, and p-cumate degradation. 3-phenylpropanoate has been 
implicated in maintaining the pH required for dental plaque maintenance, suggesting that EC 
usage may be linked to its degradation (46). On the other hand, p-cymene is an antioxidant 
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and has anti-inflammatory properties, removing any suggestion that EC usage may be useful 
against gum disease (46). It is worth noting, however, that many of the other pathways 
highlighted by our analyses have not been extensively studied, and even those that have been 
studied lack relevant research on their implications for human health. This highlights the need 
for further exploration and investigation in this area. 
 
Limitations and Future Directions As noted, the major finding of our paper is that smoking 
in its various forms does not produce a notable alteration of the overall alpha and beta 
diversity in the oral microbiota but does change the enrichment of certain species in that 
space. The key limitation of our findings is rooted in the lack of geographic diversity in the 
dataset used which makes the overall findings difficult to generalize to all smokers. Similar 
work should be repeated with more sizable cohorts and more geographically diverse 
populations to see how broadly these trends hold. Furthermore, to build on this, a future 
direction would be studying the functions of the differentially abundant taxa and pathways 
we identified in response to the effects of smoking and vaping. Although dysregulation from 
natural human homeostasis is typically associated with bad health outcomes, we can only 
truly grasp the effects of smoking in this context once we have elucidated the effect of the 
alterations we observe and whether they produce any large-scale effects on the prevalence 
and occurrence of human morbidities.  
 
Conclusions This study analyzed the effects of traditional smoking (C) and vaping (EC) on 
the oral microbiome relative to a non-smoking baseline. Our results revealed that although 
smoking in these forms may not alter the fundamental structure of the oral microbiota with 
regards to alpha and beta diversity measures, C and EC both may significantly alter the 
composition of the oral microbiota at the species level and each appears to confer a unique 
taxonomic fingerprint by promoting the growth of certain key species. Furthermore, through 
functional analyses, we predict that the metabolic pathways within the oral microbiota of 
people with differing smoking backgrounds may vary significantly, with certain pathways 
showing more than 25-fold differences in abundance in cigarette and EC smokers relative to 
the non-smoking controls. Overall, our work suggests that EC usage induces dysregulation of 
the oral microbiota compared to non-smokers in a way that is different from C smoking. 
Furthermore, our results also revealed that C and EC smokers may be at a greater risk of 
certain oral and respiratory complications based on the identity of the indicator species found 
to be over-prevalent in their oral microbiota. Given the extensive research conducted on C 
use over past decades, it underscores the emerging concerns about the long-term effects of 
EC use as well.  
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