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SUMMARY  Resistant starch diets are shown to provide various health benefits in humans 
due to the production of short-chain fatty acids from the gut microbiota. However, there is 
still ongoing debate on how to effectively study the effects of resistant starch consumption on 
human metabolism and body functions. While animal models, particularly mice, offer useful 
insights into biological processes and allow for controlled experiments, their relevance to 
human physiology and disease susceptibility is oftentimes challenged. This study compares 
the impact of a resistant starch diet on gut microbiome composition and function between 
human and humanized mouse models to determine the acceptability of mouse models for 
comparative analysis with humans. Using datasets from a human and humanized mouse 
study, significant differences were observed in both alpha and beta diversity metrics, 
indicating distinct microbial composition between human and mouse cohorts. Additionally, 
few shared taxa were found among all groups, indicating notable differences in microbial 
composition. Differential abundance analysis further highlighted significant differences 
between human and mouse groups, while PICRUSt2 analysis indicated divergent gut 
microbiome functions between the human and mouse model. Overall, these findings suggest 
that the humanized mouse model may not adequately represent the gut microbiome response 
to resistant starch diet observed in humans, emphasizing the need for cautious interpretation 
and investigation when extrapolating animal model results to human health contexts. 
 
INTRODUCTION 

tarch is a widely consumed carbohydrate in human diets and is composed of amylose 
and amylopectin polymers (1). In particular, resistant starches are those that resist 

digestion due to the human digestive enzyme’s inability to break down the starch polymers 
(1,2). There are four types of resistant starches (Type 1, Type 2, Type 3, and Type 4) and 
these types are differentiated based on their structural (1). As a result of their inability to be 
digested, resistant starches are fermented by resident gut microbiota in the large intestine (1). 
This bacterial fermentation process selects for the increase of short-chain fatty acid producing 
bacteria in the large intestine (1). These short-chain fatty acids (SCFAs), such as acetate, 
propionate, and butyrate, affect glucose homeostasis, inflammation, and satiety (1). 
Decreased production of these SCFAs, characterized as gut dysbiosis, can result in decreased 
immunity and resilience to certain non-communicable diseases such as inflammatory bowel 
disease (IBD), type 1 and type 2 diabetes, and cardiovascular disease (2,3). Studies have also 
shown that RS2-rich diets can attenuate acute postprandial glucose and insulin responses, 
total serum cholesterol, and low-density cholesterol, thus illustrating the positive impact a 
RS-rich diet can have on preventing chronic diseases like type 1 and type 2 diabetes (1,2). 

In order to investigate how a Resistant starch type-2 (RS2) enriched diet can alter the 
human gut microbiome composition, Hughes et al. (2021) conducted a randomized, placebo-
controlled trial investigating the effects of RS2-enriched wheat on glycemic response and the 
gut microbiota. They were able to find that RS2-enriched wheat is associated with a decrease 
in alpha diversity and increases in starch-degrading bacteria like Bifidobacterium, 
Ruminococcus, Roseburia, and Faecalibacterium (2). Bendiks et al. (2020) also investigated 
the responses of the gut microbiome in 13 human RS2 intervention studies (1). The outcomes 
of their study included reductions in bacterial alpha diversity, increased production of short-
chain fatty acids (SCFAs), and the enrichment of Ruminococcus bromine, Bifidobacterium 
adolescentis gut taxa (1). They noted that the subset of gut taxa that can metabolize RS2 and 
produce SCFAs became enriched in the gut microbiome (1).  
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Similar research has been done to investigate the effect of a RS-rich diet on the mouse 
gut microbiome. Kadyan et al. (2023) investigated the effects of dietary pulses-derived 
resistant starch on gut microbiome in mice carrying a human microbiome. They observed 
differential abundance of SCFAs, such as butyrate and propionate, in mice after treatment 
with an RS-rich diet (3). They also concluded that the increase in SCFA production can be 
explained by the increase in Firmicutes and Bacteroidota in the mice gut microbiome after 
exposure to an RS-rich diet, reinforcing that an RS-rich diet does indeed alter the gut 
microbiome composition of mice (3).  

Nguyen et al. (2015) studied the translatability of mouse gut microbiome changes to 
humans by looking at the compositional changes based on diet and disease. They found that 
since mouse diets are easier to control in a lab, gut microbiome changes may differ slightly 
between mice and humans, but if both diets are fairly consistent, the alterations in the gut 
microbiota are similar (4). These diets are usually standardized chow diets, so little is known 
about what changes exist between human and mouse gut microbiome after being given an 
RS-rich diet (4). Based on the current body of knowledge, there is evidence to suggest that 
the mouse model will exhibit similar changes in their gut microbiome composition relative to 
the human model when given a resistant starch diet. It is important to also note that mice are 
coprophagic (feces-eating species) and the large bowel differs from humans, pigs, and dogs 
(5). Thus, this can contribute to potential differences between human and mouse models. 
However, since the mouse dataset in the study by Kadyan et al. (2023) uses humanized mice, 
the researchers can better simulate human conditions and potentially bridge the gap between 
traditional mouse models and human physiology, offering valuable insight into the effects of 
a RS-rich diet in microbiome composition. 

Mouse and human gut microbiomes have shown compositional changes after an increase 
in resistant starch in the diet. Even with this research, there is still much more to learn about 
the effects of an RS diet on the gut microbiome. Little is known about the similarities between 
how an RS diet affects human and mouse gut microbiome, and we strive to investigate if 
using a mouse gut microbiome serves as an adequate model and predictor of the effect of RS 
diet on the human gut microbiome. Therefore, there remains a gap in our knowledge regarding 
the translatability of findings from animal models to humans, particularly in the context of 
dietary interventions, such as the RS diet. To address this gap, we investigate how a RS diet 
affects the gut microbiome composition between mouse and human models, while evaluating 
the acceptability of a mouse model for comparative analysis with humans. In order to answer 
this research inquiry we performed alpha and beta diversity metrics, core microbiome, 
differential abundance, indicator taxa and PICRUSt2 analyses on the collected datasets to 
determine whether the change in gut microbiome composition in mice before and after RS is 
synonymous to the change in gut microbiome composition in humans before and after RS. 
Our research question arises from the growing interest in understanding the role of diet in 
shaping the gut microbiome and its overall implications on human health.  

We hypothesize that this RS dietary shift will play a role in shaping the composition of 
the gut microbiome in both mice and humans in a similar manner, and consequently favoring 
specific taxa and microbial species that are different from a non-resistant starch diet. This 
hypothesis is grounded in previous research suggesting that dietary interventions, such as the 
implementation of a RS diet, can significantly impact the gut microbiome composition in both 
mice and humans (1,2). Drawing from existing knowledge, mouse models are one of the most 
commonly used models for human comparisons, as they have a considerable overlap in their 
genetic makeup with humans, with protein-coding regions having on average approximately 
85% similarity, varying between 60% and 99% (6). As a result, by comparing the responses 
of mouse and human models to RS diets, we aim to investigate the degree of similarity in gut 
microbiome changes induced by this dietary intervention across species. 

The motivation behind this research is to help bridge the gap between animal studies and 
human applications in the field of gut microbiome research. While animal models, 
particularly mice, offer valuable insights into biological processes and enable controlled 
experiments, their relevance to human physiology and disease susceptibility is often 
questioned (6). Therefore, understanding the extent of which findings from mouse models 
can be extrapolated to humans is essential for translating preclinical research findings into 
effective clinical applications. By revealing the similarities and differences in gut microbiome 
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responses to RS diets between mouse and human models, this study provides new insight that 
can inform the design of future studies focused on modulating the gut microbiome for 
improved human health. 
 
METHODS AND MATERIALS 

Human dataset. The human dataset was generated by Hughes et al., who analyzed the effects 
of resistant starch on the gut microbiome in 30 healthy individuals, aged 40-65 years old using 
a double-blind, randomized, placebo-controlled, crossover trial (2). For the first arm of the 
trial, participants were assigned to either a resistant starch enriched diet (containing 14-19g 
of resistant starch) or a wild type (control) diet (containing 2-3g of resistant starch) for a week. 
This was followed by a two-week washout period to reset the gut microbiome, before 
commencing the second arm of the trial where participants’ diet was switched for another 
week (2). Fecal samples were collected prior to the beginning of each treatment, as well as at 
the end of each weeklong treatment (2). After DNA collection from the fecal samples, the V3 
and V4 regions of the 16S rRNA gene were amplified to produce 120 samples from 30 
individuals at 4 time points: prior to and after the first treatment of the trial, and prior to and 
after the second treatment of the trial (2). For our analysis, we used the samples after the 
treatment, for a total of 30 human RS samples and 30 human control samples.  
  
Mouse dataset. The mouse dataset was generated by Kadyan et al., who looked at the effects 
of RS2 on the gut microbiome in mice with a humanized gut microbiome (3). The researchers 
depleted the mice of their gut microbiome and transplanted a pooled fecal sample from five 
individuals aged 50-55 into the depleted mice (3). These mice with humanized microbiomes 
were randomized into 3 groups: control diet, enriched resistant starch diet (using one of four 
different sources: pinto beans, black-eyed beans, lentils, or chickpeas), or positive control diet 
containing inulin (3). Fecal samples were collected at the end of each treatment (3). After 
DNA collection from the fecal samples, the V4 region of the 16S rRNA gene was amplified 
to produce 91 samples (3). For our analysis, we excluded the positive control diet samples, 
for a total of 63 mice RS samples and 14 mice control samples. 
  
Preliminary metadata manipulation. Using R (v4.3.3; 7), with packages tidyverse (v2.0.0; 
8) and readxl (v1.4.3; 9), the metadata from the Hughes et al. human dataset was filtered for 
timepoints 2 and 4 which correspond to samples which were collected after each treatment, 
while the metadata from the Kadyan et al. mice dataset was filtered to exclude the positive 
control inulin samples. They were then merged into a single metadata and a new category, 
“Group”, was created to bin each of the samples into one of 4 groups: “human-C”, “human-
RS”, “mouse-C”, and “mouse-RS” for downstream analysis. 
  
Data processing using the QIIME2 pipeline. Using Quantitative Insights Into Microbial 
Ecology 2 (QIIME2, v2024.2.0; 10), the human and mouse datasets were imported and 
demultiplexed. The datasets were denoised separately with Divisive Amplicon Denoising 
Algorithm 2 (DADA2) at a truncation length of 260 nucleotides to retain a median Phred 
Quality Score of 20 in the human dataset sequences (11). To maintain consistency, the 
truncation length of the mice dataset sequences was 260 nucleotides as well. The two datasets 
were then merged, followed by taxonomic classification on the merged dataset using the 
entire SILVA 138-99 classifier (12). Any mitochondrial or chloroplast DNA was filtered out. 
The outputs generated by QIIME2 processing on the merged dataset (ASV feature table, 
taxonomy table, and rooted phylogenetic tree) were then imported into R (7) for further 
processing. 
  
Data processing using R. For the following step, the R packages ape (v5.7.1; 13), phyloseq 
(v1.46.0; 14), tidyverse (8), and vegan (v2.6.4; 15) are used. A phyloseq object was created 
in R (7) by integrating the outputs from the QIIME2 pipeline and the merged metadata. 
  
Alpha and beta diversity analyses. To investigate the differences in gut microbiome 
diversity within and between our four groups (“human-C”, “human-RS”, “mouse-C”, 
“mouse-RS”), we calculated the alpha and beta diversity. First, the phyloseq object previously 
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generated was filtered to remove any samples with less than 300 reads, before rarefying the 
samples at a sampling depth of 6747 to retain at least 10 samples each in the four groups we 
will be comparing. The R packages phyloseq (14), ape (13), tidyverse (8), picante (v1.8.2; 
16), ARTool (v0.11.1; 17), ggsignif (v0.6.4; 18), pairwiseAdonis (v0.4; 19), and ggpubr 
(v0.6.0; 20) were used to generate the alpha and beta diversity metrics and the ggplot2 (v3.4.4; 
21) package was used to visualize these metrics. All analyses were performed on the phyloseq 
object generated during data processing in R. A phyloseq wrapper function for richness from 
the phyloseq and vegan packages (14, 15) was used to determine Shannon’s Diversity Index 
and Chao1, while the pd function from the picante package (16) was used to determine Faith’s 
Phylogenetic Diversity. These three metrics used to quantify alpha diversity and each metric 
was visualized using a taxonomic boxplot. The Kruskal-Wallis test (alpha = 0.05) was applied 
to all three metrics to determine statistical significance in microbial diversity within the 
groups. For beta diversity analysis, the vegdist function in the vegan package (15) was used 
to determine Bray-Curtis dissimilarity. Bray-Curtis dissimilarly calculates the microbial 
diversity differences between the groups. A principal coordinate analysis (PCoA) plot was 
used to visualize the metric and statistical significance was calculated with permutational 
multivariate ANOVA (PERMANOVA) (alpha = 0.05) using the adonis2 function from the 
vegan package in R (15).  
  
Core microbiome analysis. Core microbiome analysis was performed in R utilizing the 
packages tidyverse (8), phyloseq (14), and microbiome (v1.24.0; 22). The phyloseq object 
created during the data processing step was filtered by group, for a total of four groups: 
“human-C”, “human-RS”, “mouse-C”, “mouse-RS”. Core microbiome taxa were identified 
for all four groups at the genus and family level with a detection parameter of 0.001 (to filter 
out any rare ASVs) and a prevalence of 0.7 (present in 70% of samples). Core microbiome 
analyses were visualized with four-way Venn diagram comparisons using the package ggvenn 
(v0.1.10; 23).  
  
Indicator species analysis. The indicator species analysis was run in R using the indicspecies 
(v1.7.14; 24), tidyverse (8), and phyloseq (14) at the genus and family level to identify key 
taxa among the four groups. The previously generated phyloseq object was converted to 
relative abundance, before using the multipatt function to cluster samples by group (“human-
C”, “human-RS”, “mouse-C”, “mouse-RS”). The taxonomy table was extracted from the 
relative abundance and merged with the phyloseq object, before filtering the results at p < 
0.05. Following filtration, we kept only those that had an indicator species index value ≥ 0.8. 
Using ggplot2 (21), a bubble plot was constructed to visually compare prevalence and relative 
abundance of these key taxa across the groups.  
  
Differential abundance analysis. Differential expression analysis based on the Negative 
Binomial distribution (DESeq) was done in R, utilizing the packages tidyverse (8), phyloseq 
(14), and DESeq2 (v1.42.1; 25). The phyloseq object previously generated was converted to 
a DESeq object, before running the DESeq function itself at the genus level. The results of 
the DESeq were used to generate comparisons between groups, namely: a “human-C” and 
“human-RS” comparison, a “mouse-C” and “mouse-RS” comparison, a “human-C” and 
“mouse-C” comparison, and a “human-RS” and “mouse-RS” comparison. Using the R 
package ggplot2 (21), these results were visualized as volcano plots with significantly 
differentially abundant taxa defined with an adjusted p-value of <0.01 and |log2FoldChange| 
> 2.  
  
Phylogenetic investigation of communities by reconstruction of unobserved states 
version 2.0 (PICRUSt2) analysis. To investigate if there were functional similarities 
between our groups, we ran a PICRUSt2 analysis. Using QIIME2 (10), the merged feature 
table file generated during the QIIME2 pipeline was filtered to remove any features with 5 or 
lower counts. Then, the QIIME2 PICRUSt2 plugin was used to generate a pathway abundance 
file as well as a KEGG orthology metagenome file. These files and the previously generated 
merged metadata were imported into R (9) for further analysis using the packages readr 
(v2.1.5; 26), ggpicrust2 (v1.7.3; 27), tibble (v3.2.1; 28), tidyverse (8), ggprism (v1.0.4; 29), 



UJEMI Garcia et al. 

September 2024   Volume 29: 1-15 Undergraduate Research Article • Not refereed https://jemi.microbiology.ubc.ca/ 5 

patchwork (v1.2.0; 30), DESeq2 (25), and ggh4x (v0.2.8; 31). Prior to running the differential 
abundance analysis, the abundance file was filtered to remove any pathways with less than 3 
non-zero abundances, and the samples in abundance data were verified to match the samples 
in the metadata. Differential abundance analysis was done using the Linear Discriminant 
Analysis (LinDA) method (32) with Bonferroni p-value adjustment to compare the abundance 
of each pathway between the groups (“human-C”, “human-RS”, “mouse-C”, “mouse-RS”). 
The pathways were annotated using the MetaCyc pathways database (33). Significant 
pathways were filtered for using an adjusted p-value of ≤ 0.05, while non-significant 
pathways were filtered for using an adjusted p-value of > 0.05. Using ggplot2 in R (21), 
principal component analysis (PCA) plots were used to visualize the significant and non-
significant pathways between groups and a barplot was generated to compare the top 
abundant pathways from each group. 
 
RESULTS 

Microbial community richness and evenness were significantly different between 
resistant starch models. To determine differences in microbial community richness, 
evenness and phylogeny between the models, we measured Chao1, Shannon and Faith’s 
phylogenetic diversity index for each dataset (Figure. 1). We found that richness was higher 
in human-C when compared to mouse-C, but there was no difference between the other 
groups, as well as no significant change in response to RS treatment (Figure. 1A). On the 
other hand, we found that Shannon’s diversity index was significantly higher in the human 
groups than in the mouse groups, there was also a reduction in diversity after RS treatment in 
the human cohort, but no change in the mouse cohort (Figure. 1B). Finally, Faith’s 
phylogenetic diversity was found to be similar across all groups with no statistically 
significant differences (Figure. 1C).  

 

FIG. 1 Resistant starch diets decreased evenness in 
the human microbiome but not in humanized 
mouse microbiome; there is an overall higher 
richness and evenness in the human cohort than in 
the humanized mouse cohort, but phylogenetic 
similarity is maintained. Alpha diversity between 
human control (human-C), human resistant starch 
(human-RS), humanized mouse control (mouse-C) 
and humanized mouse resistant starch (mouse-RS) 
measured as (A) Chao1 Index, (B) Shannon Diversity 
Index and (C) Faith's Phylogenetic Diversity. 
Statistical significance determined by Kruskal-Wallis 
test. (ns) not significant, (*) p < 0.05, (**) p < 0.01, 
(****) p < 0.0001. 
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Microbial community structure differences were driven by species. To compare the 
human and humanized mice microbial communities, a beta diversity analysis was done using 
the Bray-Curtis dissimilarity metric. Microbial community structure was found to be 
significantly different between the human groups and mouse groups (R2 = 0.25, F = 10.975) 
(Figure 2). However, within each cohort the resistant starch status did not drive significant 
differences.  

 
Differential abundance analysis reveals significant differences in ASV abundance 

between RS human and humanized mice microbiomes. Differential abundance analysis was 
conducted to determine changes in ASV abundance between each of the four groups (human-
C, human-RS, mouse-C, mouse-RS). Volcano plots were constructed to visualize these 
changes (Figure 3). The human microbial communities displayed fewer differentially  

 

FIG. 2 Community structure 
differed by species but not 
treatment. Principal Coordinate 
Analysis plot (PCoA) of Bray-
Curtis distance matrix between 
human-C, human-RS, mouse-C 
and mouse-RS. Statistical 
significance determined by 
PERMANOVA (p < 0.001). 
 

FIG. 3 Resistant starch diets 
affect ASV abundance 
differently in human vs. 
humanized mouse microbiomes. 
Differential abundance analysis 
between human-C, human-RS, 
mouse-C, and mouse-RS. Volcano 
plot comparing (A) human-C and 
human-RS, (B) mouse-C and 
mouse-RS, (C) human-C and 
mouse-C, and (D) human-RS and 
mouse-RS at an adjusted p-value 
cutoff of 0.01 and 
|log2FoldChange| > 2. 
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abundant ASVs in response to a RS diet when compared with the mouse microbial 
communities (Figure 3A & B). However, the responses to the diets showed different trends 
between the human and humanized mouse cohorts, with more downregulation of ASVs in the 
human microbiome (Figure 3A) and more upregulation of ASVs in the mouse microbiome 
(Figure 3B). Within the control groups, there were 305 differentially abundant ASVs in the 
mouse-C samples when compared to the human-C out of a total 2216 ASVs (Figure 3C). 
Within the RS groups, there were 363 differentially abundant ASVs in the mouse-RS samples 
when compared to the human-RS (Figure 3D).  

Few key genera and core families shared between the models. We analysed core 
microbiome at genus and family level to identify shared taxa between the models. At a 
detection of 0.001 and prevalence of 70%, we found only 3 shared core genera between the 
four groups (Figure 4A): Alistipes, Parabacteroides, and Bacteroides; and the genus Blautia  

 

being shared among all except mouse-RS. The human model core genera found in both the 
control and RS groups were: Bifidobacterium, Faecalibacterium, Subdoligranulum, 
Monoglobus, Dorea, Fusicatenibacter, Anaerostipes, Agathobacter, and 
[Eubacterium]_coprostanoligenes_group. The only core genus found exclusively in human-
RS is Ruminococcus. The core genera specific to the humanized mouse model were: 
Akkermansia, Lactococcus, Streptococcus, Enterococcus, and Lachnoclostridium. Bilophila 
was an exclusive core member of mouse-C; Lactobacillus, Erysipelatoclostridium, and 
Colidextribacter were exclusive to mouse-RS.  

At the family taxonomic level we found 6 families that represent 33% of the core families 
being shared by all four groups (Figure 4B): Bacteroidaceae, Ruminococcaceae, 
Oscillospiraceae, Lachnospiraceae, Rikenellaceae, and Tannerellaceae. The 4 human 
specific families were: Bifidobacteriaceae, Sutterellaceae, Monoglobaceae, and 
[Eubacterium]_coprostanoligenes_group (of the order Oscillospirales). And the 7 core 
humanized mouse model families were: Akkermansiaceae, Streptococcaceae, 
Desulfovibrionaceae, Enterococcaceae, Erysipelotrichaceae, and Erysipelatoclostridiaceae. 
At this level only one family remained exclusive to one cohort-treatment group: 
Lactobacillaceae in the mouse-RS samples.  

We ran an indicator species analysis at genus level to compare the abundance and 
prevalence of genera across the four groups (Figure S1). This analysis showed genera 
previously identified as core members such as Akkermansia, Bifidobacterium, and 
Enterococcus, but it also showed some genera not classified as core members: Holdemania, 
Oscillospiraceae UCG-002, Lachnospiraceae_ND3007_group, and 
Lachnospiraceae_FCS020_group. For a more stringent list of key genera associated with the 
groups we kept the matches in the core for each group and the indicator genera shown in 
Figure S1. While we found no indicator genus associated with all four groups, we found that 
Bifidobacterium (stat = 0.881) and Anaerostipes (stat = 0.872) were classified as indicator 

FIG. 4 More common taxa shared within than between the human and mouse cohorts. Core microbiome analysis at (A) 
Genus and (B) Family level between human-C, human-RS, mouse-C, and mouse-RS using detection value of 0.001 and 
prevalence of 0.7. 
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genera for human-C, human-RS, and mouse-C even though they were classified as core 
members of the human samples only; Streptococcus (stat = 0.901) was classified as indicator 
for human-C, mouse-C, and mouse-RS; Blautia (stat = 0.975) was found to be both a core 
member and an indicator genera of the human-C, human-RS, and mouse-C groups. There 
were some human and humanized mouse exclusive key genera listed in Table 1, these are 
genera found in both the control and RS groups within each cohort.  

 
TABLE. 1 Key genera specific to each cohort. The genera shown were chosen based on the union between core 
members as identified by the core_members function and the indicator taxa at a stat value >= 0.8 as identified by the 
multipatt function.  

Predicted microbial functions were significantly different between the human and 
humanized mouse microbiomes. We ran PICRUSt2 to estimate potential metabolic 
pathways associated with the ASVs. To compare the abundance of these pathways we ran a 
differential abundance analysis using the LinDA method between cohorts (human vs. 
humanized mouse). We found that 195 out of a total of 444 pathways were differentially 
expressed between humans and humanized mice, most of the pathways were not found to be 
significant. We compared the overall pathway composition between the groups (Figure 5A)  

 

Human 

Family Genus stat p.value 

Ruminococcaceae Faecalibacterium 0.983 0.005 
Subdoligranulum 0.966 0.005 

[Eubacterium]_coprostanoligenes_group [Eubacterium]_coprostanoligenes_group 0.814 0.005 
Monoglobaceae Monoglobus 0.895 0.005 

Lachnospiraceae 
Dorea 0.969 0.005 
Fusicatenibacter 0.965 0.005 
Agathobacter 0.957 0.005 

Humanized mouse 

Akkermansiaceae Akkermansia 0.868 0.005 
Streptococcaceae Lactococcus 0.991 0.005 
Enterococcaceae Enterococcus 1.000 0.005 

FIG. 5 Species drive estimated functional differences but not resistant starch diets. (A) Principal Component analysis (PCA) plot of 
predicted functional pathways of human-C, human-RS, mouse-C and mouse-RS microbiomes. (B) Barplot showing the relative abundance of 
the top 10 most abundant pathways from each group (15 pathways total) across all groups.  
 
 



UJEMI Garcia et al. 

September 2024   Volume 29: 1-15 Undergraduate Research Article • Not refereed https://jemi.microbiology.ubc.ca/ 9 

and found clear clusterings by models along the PC1 (14.1%) axis. We also determined the 
top 10 most abundant pathways in each group and compared the relative abundance across 
the samples in the four groups (Figure 5B). While all top pathways were present in both 
samples, there are some pathways that showed different abundances between cohorts, such 
as “starch degradation V” which would seem on average more abundant in the human samples 
than in the mouse samples. Overall, it would seem that the humanized mouse pathways 
hadmore variable abundance, this also relates to the increased dispersion shown in the PCA 
plot (Figure 5A). However statistical analysis would have to be carried out to quantify and 
test these differences.  

 
DISCUSSION 

Humanized mouse models have been identified as ideal models for conducting research 
related to the gut microbiome (34). In addition, diet has been shown to be a strong factor in 
shaping the gut microbiome in both humans and mice (35). This study looks at the mouse 
model used in Kadyan et al. compared to the human microbiome studied in Hughes et al. to 
determine if a mouse model is an acceptable model for determining the effects specifically of 
RS diets on the human microbiome. We hypothesized that humanized mice area good model 
for RS diets in humans and that it would play a similar role in shaping the microbial 
composition in both species due to a human microbiome in the mice model, resulting in a 
similar shift in taxa. We expected to find no significant differences between the cohorts across 
the comparisons and analysis made. Unfortunately, we found that the humanized mouse 
model used in this study is not an adequate model for studying the effects of RS diets when 
compared to the human RS diet study. Not only were there significant differences between 
the microbial compositions between humans and mice, but the microbial functions also 
differed significantly.  

Based on the alpha diversity results, we see that there are no significant differences 
between the groups when comparing just richness or phylogenetic similarity. The differences 
observed seem to be mainly driven by abundance or evenness. The within species alpha 
diversity agree with what was observed in the original papers where significant differences 
were found in the human dataset but not the mouse dataset (2, 3). The unexpected alpha and 
beta diversity differences between species reveals distinct populations, which goes against 
our hypothesis. 

The gut microbiome of humanized mice have previously been well established showing 
strong correlations between the donor human microbiome and the recipient mice microbiome 
(35). Interestingly, our alpha and beta diversity metrics suggest that the gut microbiome 
populations are significantly diverse from each other. Diet is known to be a strong 
determining factor for gut microbiome but even after a RS diet in both humans and mice, the 
microbial diversity still differs (34). In addition to diet, there are many other factors that could 
play a role in determining the composition of the gut microbiome (36). One possible 
explanation for the differences observed in diversity between humans and humanized mice 
before and after RS are the differing initial microbial communities because of the different 
individuals used to colonize the mice microbiome in Kadyan et al. and the participants in 
Hughes et al., as well as the different diets consumed by the subjects.  

Following the diversity metric analysis, we wanted to determine if there are any 
compositional similarities by looking at taxa abundances or the presence of shared taxa using 
differential abundance, indicator taxa and core microbiome analysis. The differential 
abundance analysis revealed more taxonomic abundance differences before and after a RS 
diet between species, where humans showed 15 while mice showed 128 (Figure 3A and 3B). 
In addition, we also found that 305 taxa showed taxonomic abundance differences between 
control groups and 363 between RS groups, indicating significant differences in the 
abundance of taxa between the two species (Figure 3C and 3D). These results suggest that 
RS has varying effects on the two different microbiomes, causing more differential abundance 
changes in the humanized mice microbiome compared to the human as well as significantly 
higher differences in abundance before and after RS diets between the two groups. This may 
indicate that even before RS intervention there were already significant differences in 
abundance between the species’ microbial composition. 
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Core microbiome analysis revealed more shared core genera within species, showing 9 
between human-C and human-RS and 5 between mouse-C and mouse-RS, compared to only 
3 between all groups. Interestingly, Alistipes, Bacteroides, Parabacteroids, found between 
all the groups are bacteria associated with carbohydrate metabolism and secretion of short 
chain fatty acids similar to the findings in both Kadyan et al. and Hughes et al. (2, 3, 37, 38). 
Blautia, found in all groups except mouse-RS, is also found to be associated with the 
production of SCFAs (39). Within the two species, almost all the core microbiome was found 
to be associated with SCFA secretion including Bifidobacterium found in human-C and 
human-RS and Lachnoclostridium found in mouse-C and mouse-RS (3, 40). When looking 
at the family level, we notice that the families like Bacteroidaceae, Ruminococcaceae and 
Lachnospiraceae were found to be common between all four groups, which are families 
associated with production of SCFA (41, 42, 43). Most of the microbial genus that were found 
to be distinct between the mice and humans belong to one of the 6 shared families that have 
been associated with the response to RS and secretion of SCFA.  

After determining the core microbiome, we looked at the indicator taxa, looking 
specifically at the ASVs shared in the core microbiome analysis. Based on the combined 
results, human gut microbiomes are associated with more SCFA producing families including 
Ruminocaccae, Monoglobacae and Lachnospiracae (42, 43, 44). On the other hand, the 
humanized mouse microbiomes are also associated with SCFA producing families such as 
Enterococceae, but also non-SCFA producing bacteria like Streptococcus, which is known 
for their association with inflammation and infection response (45, 46). Human microbiomes 
show a stronger selection for SCFA producing bacteria compared with mice. Although mice 
and humans share biological similarities making them comparable to humans, there still exists 
anatomical differences between them such as the structure of the stomach, thickness of the 
colon and distribution of cell types throughout the digestive system (4). Due to these inherent 
differences, various taxa may not be capable of colonizing the gut microbiome from humans 
to mice, which could also affect the taxa that are capable of colonizing the gut microbiome 
(47). These differences between mice and humans could explain the slightly different core 
microbiome and indicator taxa as well as the differential abundances despite their seemingly 
overlapping functions based on compositional analysis. 

Finally, we used PICRUSt2 to further investigate the functional profiles based on the 
differences found from the compositional analysis between mice and humans, in hopes of 
finding similarities. Functional analysis revealed overlapping functional profiles within 
species but the major pathways are similar between all groups, in addition 195 out of 444 
pathways were found to be significantly different between the species. The shared major 
pathways between human and mice include core metabolic pathways such as the pentose 
phosphate pathway, adenosine deoxyribonucleotides de novo biosynthesis II and L-valine 
biosynthesis. These pathways are essential for the survival of organisms including nucleotide 
and amino acid synthesis (48, 49).  This may suggest that non-essential pathways between 
the species are significantly different resulting in the differences between species. 

 
Limitations Despite our results and analysis contradicting the predictions made in our study 
hypothesis, it is important to note the several limitations within our study. For example, one 
major limitation to consider was that both the human and mouse datasets exhibited significant 
variability in read lengths and quality, perhaps due to suboptimal sequencing conditions. 
Therefore, while truncating the mouse dataset to match the length of the human dataset, this 
may have oversimplified the mouse data and overlooked valuable information present in the 
full-length mouse sequences. As a result, this data could have been more comparable to the 
human cohort in downstream analysis. 

Another major limitation to note was the sample size used in our study. Since there was 
a discrepancy in sample sizes between the human and mouse datasets, this can reduce the 
statistical power of the analysis and hinder our ability to identify potential subtle variations 
in the gut microbiome composition between human and mouse groups. In addition to the 
variable sample sizes, the datasets used small sample sizes, with 30 human-C and 30 human-
RS samples, and 14 mouse-C and 63 mouse-RS samples. Consequently, the results generated 
may not be representative of the gut microbiome alterations in a broader human population 
in response to a RS-rich diet. Therefore, this limits the generalizability and applicability of 
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the conclusions made on how the mouse dataset is an inadequate model to translate findings 
of RS-rich diets effects on the human gut microbiome. 

Another source of limitation was the differences in experimental methods between the 
mouse and human datasets. For instance, the RS diet exposure varied between the human and 
mouse groups; the mouse cohort strictly followed a 12-week diet intervention, whereas the 
human cohort participated in a cross-over study, with 1 week in a controlled or RS diet 
intervention, then 2-week washout, and lastly 1 week of the alternative diet. Therefore, not 
only was the study duration distinct between the mouse and human groups, but the 
administration and exposure of the RS diet varied as well, potentially affecting the results we 
generated. Moreover, since the datasets did not use the same exact RS-rich diets, other 
components of the administered diet could affect the gut microbiome response consequently. 
In the human dataset, participants were given RS2-enriched wheat rolls that provided roughly 
14–19 g of resistant starch each day (2), whereas in the mouse dataset they were given various 
RS-rich beans (3); therefore, because there were no distinctions in the RS type and abundance 
used in each diet, the different levels of RS consumed could potentially play a role in the 
differences we observed in the gut microbiome response between the human and mouse 
groups. As a result, the methodological variability between the two datasets may be an 
influencing factor as to why the mouse model did not show similar gut microbial composition 
or functional alterations in response to a RS diet when compared with the given human 
dataset. In addition, developing the humanized mice with the pooled fecal content of only 5 
healthy individuals may not fully capture the diversity and complexity of the human gut 
microbiome and could lead to biases in the microbial composition of the humanized mice 
when comparing the gut microbial effects of a RS diet in the human cohort. Overall, 
addressing and controlling for these limitations in future research will ameliorate our 
understanding of translational relevance of mouse model findings to human gut microbiome 
research. 
 
Conclusions This study compares the effects of a RS diet on the gut microbiome composition 
and function between a humanized mouse model by Kadyan et al. (2023) (3) and human 
model by Hughes et al. (2021) (2) in order to assess the suitability of this mouse model for 
comparative analysis with humans. We found that there were significant differences between 
all four species-treatment groups except mouse control and mouse RS diet through Shannon 
diversity metrics, whereas in Faith’s Phylogenetic diversity we found no significant 
differences between the four groups suggesting alpha diversity differences are driven mostly 
by abundance and not phylogenetic similarity. In the beta diversity analysis, we used Bray-
Curtis dissimilarity to generate a principal coordinate analysis plot, revealing a significant 
separation between the four species-treatment groups and illustrates that the microbial 
community structure was significantly different between the human and mouse groups. 
Further analysis using the core microbiome showed few shared taxa among all 4 groups, also 
indicating notable microbial differences between the mouse and human cohorts. Likewise, 
differential abundance analysis comparing human and mouse control with human and mouse 
RS groups also illustrated significant differences between the mouse and human groups. 
Consequently, despite the compositional differences observed, PICRUSt2 analysis was done 
to investigate whether microbial functions were maintained between the mouse and human 
datasets. Upon generating the principal component analysis, the functions cluster together by 
mouse group and human group respectively, indicating that microbiome functions are 
different between mouse and human. Our findings ultimately suggest that the humanized 
mouse model by Kadyan et al. (2023) (3) is not an adequate model to compare the effects of 
a RS diet on the gut microbiome response with the human model by Hughes et al. (2021) (2). 
These findings thus emphasize the importance of cautious interpretation and further 
investigation when extrapolating results from animal models to human health research.  
 
Future Directions To better understand the translatability of mouse models in the context of 
RS- rich diets in humans, future research can focus on compiling additional human and 
humanized mouse datasets to ensure a more comprehensive comparative analysis. When 
selecting potential mouse datasets, it is important to consider studies that use various diverse 
and representative pools of fecal donors to generate humanized mouse models. In addition, 



UJEMI Garcia et al. 

September 2024   Volume 29: 1-15 Undergraduate Research Article • Not refereed https://jemi.microbiology.ubc.ca/ 12 

because the datasets used different RS-rich diets, future research can implement a 
standardized protocol, such as using the same diet or directly transferring fecal samples from 
the humans being studied to the humanized mice. By matching the conditions in both species, 
this can lead to a stronger focus on the implications of a specific RS-rich diet, and can 
differentiate between the effects of the four distinct RS types on the gut microbiome 
respectively.  

Using these two datasets, future studies can examine and compare the metabolites 
released in response to the RS diet in both the human and mouse groups. This approach may 
provide valuable insights into whether the mouse model shares similar metabolic activities of 
the gut microbiome in the context of human dietary interventions. Furthermore, exploring 
alternative models mentioned previously such as pigs, rats, and dogs is a promising area of 
research to determine whether there is a gut microbiome difference across species or if there 
are better species to model the effects of RS-rich diets in humans. In addition, further research 
evaluating the genetic and anatomical differences between mice and humans is vital in order 
to better reassess mouse models as a useful comparative tool for human gut microbiome 
research. Additionally, although this study focused on a more narrow time frame, looking at 
gut microbiome changes in weeks, future studies can examine longitudinal studies to help 
determine if the differences observed in the gut microbiome between humans and mice 
persists after longer periods on a RS diet. Lastly, additional studies can compare the changes 
of the gut microbiome in RS diets administered to humans and mice in both healthy and 
diseased states, such as diabetes and IBD, where RS diets are suggested to improve resilience 
to such chronic diseases (2).  Collecting and analyzing more data from various human and 
mouse samples will ultimately provide greater insight into the dynamics of microbial 
community shifts over time, and can reveal similar or distinct patterns of adaptation or 
resilience between mice and humans to dietary interventions such as RS-rich diets. 
 
 
DATA AVAILABILITY 

The mouse dataset can be accessed via the National Library of Medicine (NIH) under 
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