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SUMMARY   Familial dysautonomia is a genetic neurological disease characterized by 
impaired nervous system functions due to a mutation of Elongator acetyltransferase Complex 
subunit 1. Previous studies have demonstrated that the severity of familial dysautonomia is 
associated with variations in the gut microbiota and metabolite profiles in both human patients 
and mice. However, the mouse model for familial dysautonomia has yet to be characterized 
in terms of demographic factors (i.e. sex and age) associated with their gut microbial dysbiosis 
and metabolic composition. Hence, we aim to investigate the variables associated with gut 
microbial dysbiosis and how they impact gut microbial dynamics and metabolic functions in 
mice with familial dysautonomia. First, through univariate regression analysis with Bray-
Curtis distance and principle coordinate analysis, we determined that sex was the strongest 
indicator correlated with compositional variations. Next, our taxonomic composition analysis 
revealed a decrease in the abundance of Bacteroidota and increased Firmicutes in male 
familial dysautonomia mice compared to females. Furthermore, indicator species analysis 
identified signature genera of class Clostridia, that were representative in male familial 
dysautonomia mice. Despite no significant sex differences across metabolic pathways from a 
predictive functional analysis, correlation analysis identified a strong association between 
genera Romboutsia and creatinine degradation II pathways that were shown to be upregulated 
in males compared to female FD mice. Ultimately, our findings presented that microbial 
dysbiosis is intricately linked with sex in the familial dysautonomia mouse model. Further 
characterization of the mouse model allowed insight into its representation of FD and 
applicability to human patients.  
 
 
INTRODUCTION 

eurodegenerative diseases are chronic conditions that progressively impair different 
parts of the nervous system. While most neurodegenerative diseases are genetically-
based, progressive, late-onset, and will shorten life expectancy, Familial Dysautonomia 

(FD) stands out showing symptoms during infancy (1–3). Familial dysautonomia (FD) is an 
autosomal recessive disease that affects the autonomic nervous system (4). FD patients 
experience involuntary organ dysfunctions, such as breathing difficulty, blood pressure 
instability, pain and temperature perception impairment, and movement coordination 
difficulties (5). They are homozygous for a deleterious allele of Elongator Acetyltransferase 
Complex subunit 1 (ELP1) (6, 7). ELP1 is a scaffolding protein subunit that binds to tRNA 
to facilitate mRNA translation within the central nervous system and peripheral nervous 
system (8, 9). Reduced ELP1 production decreases the association of the Elongator complex 
to tRNA, and therefore, gene translation (8). This impairs neuronal development and 
degeneration of sensory and autonomic neurons crucial to organ innervation (3). The 
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bidirectional communication between the gut microbiota and parts of the nervous system is 
often referred to as the Gut-Brain Axis (GBA) (10). It suggests that impaired neurons can 
alter the gut microbiome and metabolomes (11). Consequently, neural symptoms experienced 
by FD patients are often correlated with gut microbiome dysregulations (12–14). 
Additionally, FD patients exhibit lower fat content and body mass index, along with 
heightened metabolic rates, which also suggests that gut metabolism and function are affected 
due to imbalanced or altered gut microbiota, often referred to as gut microbial dysbiosis (15).  

Previously, Cheney et al. studied the microbiota and metabolite profiles in healthy and 
ELP1-deficient individuals to investigate whether the GBA is involved in FD pathology (12). 
They demonstrated disparities between healthy and FD-affected individuals, which suggested 
a correlation between ELP1-deficiency, and gut microbiome and metabolic disruptions (12). 
Further analysis of these individuals revealed that variables, such as age, diet, antibiotic 
history, stomach acid conditions, stool choline levels, and fundoplication, were potentially 
associated with microbial dysbiosis in FD patients (12). Interestingly, studies on other 
neurodegenerative diseases revealed that host factors are strongly associated with disease 
onset and progression (16–19).  In the FD mouse model, Khatra et al. observed a significant 
increase in microbial richness as disease severity increased, as well as altered metabolic 
functions (20). Additionally, several microbial species have been identified to be indicative 
of different FD severities (20). However, other host variables in mouse models, including 
age, sex, body weight, and genotype, remain unexplored in terms of their impact on gut 
microbial and metabolomic composition.  

Based on these observations, we hypothesize that we will discover additional significant 
variables, other than FD severity, which are associated with gut microbial dysbiosis in FD 
mice. We also hypothesize that FD mice will exhibit different microbial and metabolic 
characteristics among different levels of the identified significant variable(s). 

While FD is a human disease, it is challenging to understand disease mechanisms and 
maximize research findings from human models while balancing ethical considerations. 
Mouse models provide advantages in studying human diseases as they are biologically similar 
to humans (21). They also provide convenience in result interpretation and studying 
biological changes over the lifespan with fewer ethical constraints (21). Despite the metabolic 
differences between mice and humans, an improved understanding of the mouse model would 
lead to useful findings that are more likely to be applicable to FD in humans (21).  
 
METHODS AND MATERIALS 

Familial Dysautonomia dataset. The mouse FD 16s rRNA amplicon sequencing datasets 
were generated by Cheney et al. (9). Stool samples were collected from Specific Pathogen 
Free C57BL/6 mice carrying Tuba1a-Cre+; Elp1loxp/loxp mutation (FD mice) with FD scores 
ranging from 0 (no disease) to 12 (severe disease) and Tuba1a-Cre-; Elp1+/loxp littermates 
(control) (9). This study included three different experimental groups (cohoused, succinate, 
and general) and two different treatment types (separate or cohoused). No analyses were done 
on the succinate experiment group and the cohoused treatment type in our current study. Both 
male and female mice were included in this study with ages ranging from 21 days to 485 days 
of age.  
 
Data processing using the QIIME2 pipeline.  Data processing steps were conducted using 
the Quantitative Insights into Microbial Ecology version 2 (QIIME2) (v2023.7) (22).  The 
raw pair-ended 16s rRNA sequences from the mouse Familial Dysautonomia dataset were 
imported and demultiplexed. No trimming was applied to the reads since all sequences in the 
dataset were 251 nucleotides long with a median Phred quality score of 30. Next, denoising 
and clustering were performed using the Divisive Amplicon Denoising Algorithm 2 
(DADA2) (23). Taxonomic classification of the ASVs was conducted using the SILVA 138-
99 database (24) for the V4 region of the 16s rRNA gene, amplified with primers 515F 
(GTGCCAGCMGCCGCGGTAA) and 806R (GGACTACHVGGGTWTCTAAT) (25). Any 
detected chloroplast and mitochondrial sequences were filtered out.  
 
Data processing in R.  The metadata file, along with files generated through QIIME2 were 
imported into R using the tidyverse package (version 2.0.0) (26). The information from these 
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files was formatted and then combined into a single phyloseq object using the phyloseq 
package (version 1.38.0) (27). Subsequently, ASVs with less than five counts total and 
samples with less than 100 reads were filtered out. The phyloseq object was then further 
refined to include only general and cohoused experimental groups under the “experimental 
group” variable within the separate treatment groups under the “treatment group” variable. 
Samples were then rarefied to a sampling depth of 9069. The rarefied phyloseq object had 33 
samples and the unrarefied phyloseq object had 59 samples.  
 
Univariate regression analysis.  The rarefied phyloseq object was filtered to retain as many 
variables that may be associated with gut microbiome dysbiosis. This included age, cage ID, 
experiment group, mouse ID, phenotype score, FD severity, sex, and weight in grams. 
Missing data was removed, NA values were filtered out, and a dissimilarity matrix based on 
microbial community composition using the Bray-Curtis distance was calculated using the 
vegan (version 2.6-4) package (28). Finally, a permutational multivariate analysis of variance 
(PERMANOVA) statistical test was performed while controlling for cage ID, a confounding 
variable. A result matrix was populated with R-squared and p-values obtained from the 
PERMANOVA analysis for each variable and then filtered to retain only statistically 
significant (p-adjusted<0.05) biological variables which included age, sex, genotype, and 
weight (g).  
 
Taxonomic composition analysis. Taxonomic analysis was performed on the unrarefied 
phyloseq object. Relative abundance (%) at the phylum level was calculated by the dplyr 
(version 2.0.0) package (29) and visualized by ggplot2 (version 3.5.0) package (30) stratified 
by sex and genotype.  
 
Alpha and beta diversity analyses. Alpha diversity was calculated in Shannon, Chao1, and 
Pielou’s evenness from the phyloseq (1.38.0) package (27), and Faith’s phylogenetic diversity 
indices from the picante (version 1.8.2) package (31). The significant differences in alpha 
diversity between sexes were determined by a generalized linear model with mouse age as a 
covariable, following Gaussian distribution (p<0.05) from the stats (version 4.1.1) package 
(32). Beta diversity was calculated in Bray-Curtis, Jaccard, and weighted UniFrac distances. 
The significance of different microbial compositions of mouse sex and age were analyzed by 
PERMANOVA (p<0.05). Kruskal-Wallis test and Wilcoxon rank-sum test (p<0.05) were 
performed.  
 
Indicator species analysis (ISA).  ISA was performed on the unrarefied phyloseq object. 
The phyloseq object was subsetted to remove data from control mice samples. Data was 
analyzed at all taxonomic levels from Phylum to ASV level to reveal patterns of the indicator 
species. The loaded phyloseq object was grouped by each taxonomy level, using the phyloseq 
(version 1.46.0) package (27). The sample counts were transformed into relative abundances. 
For all ASVs, indicator values and p-values were calculated using the indicspecies (version 
1.7.14) package (33). All indicator values and p-values were combined with the phyloseq 
object’s taxonomy table into a table. This table was then filtered to remove non-significant p-
values (p>0.05) and indicator values (stat<0.80).  
 
Differential sequence expression analysis (DESeq). DESeq was performed on the 
unrarefied phyloseq object. The phyloseq object was filtered to remove data from control 
mice samples, subsetted into FD male and female mice, and converted into a DESeq object 
using the DESeq2 (version 1.42.0) package (34). The sample ASVs were transformed into 
relative abundances to create a matrix of differential abundance, with female FD mice 
assigned as the reference group. A volcano plot was created using the ggplot2 (version 3.5.0) 
package (30) under two conditions to assess significance — adjusted p-values lower than 0.05 
and |log2FoldChange| values greater than 1.5 — to show effect size and significance of the 
results. Significant and non-significant ASVs were differentiated by different plot colours. 
Finally, a results table was created with the list of significant ASVs, which was pruned using 
the phyloseq (version 1.46.0) package (27). To visualize the specific abundances of the 
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identified significant ASVs in the results table, a bar plot was created using the ggplot2 
(version 3.5.0) package (30) and RColorBrewer (version 1.1-3) package (35).  
 
Predictive functional analysis. Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States (PICRUSt2) analysis was performed using QIIME2. 
The input file was created from the QIIME2 denoising and clustering step with sequences 
grouped into respective ASVs and chloroplast and mitochondrial sequence filtered out. Next, 
the file was filtered to keep only ASVs with a frequency greater than 5. To compare the 
metabolic pathways between male and female FD mice, the predicted gene family abundances 
were mapped to known metabolic pathways, and the relative counts per sample were analyzed 
to derive pathway abundance information using the qiime2-picrust2 (version 2023.2) plugin 
(36). The output of the pathway abundance table was converted to a human-readable file. 
Downstream analysis in R was done using ggpicrust2 (version 1.7.3) package (37) and with 
the metadata of the rarified phyloseq object that was used for taxonomic analysis. The 
abundance table was filtered to contain samples that existed in the filtered metadata. The 
pathway identifiers were annotated using MetaCyc pathway descriptions. A Principal 
Component Analysis (PCA) plot was created using all the pathways with mutant genotypes 
of the filtered samples, between sexes. A log2FoldChange bar graph was created using only 
significant pathways with p-adjusted<0.05 and |log2FoldChange|>2, using female FD mice 
as the reference group. A heatmap was created using pathways of both genotypes and with p-
adjusted<0.05 and |log2FoldChange|>1.5. 
 
Correlation analysis between taxa composition and metabolic pathways. Correlation 
analysis was performed by calculating relative abundance using the taxa table from 
taxonomic composition analysis, and relative abundance of significant metabolic pathways 
in FD mice. Using Spearman’s rank correlation test, only genera in FD samples with p-
adjusted<0.05 were kept. A scatter plot was created using the relative abundance of each FD 
sample of both sexes in the genera and the four significant pathways from predictive 
functional analysis.  
 
RESULTS 

Sex was strongly associated with changes to the gut microbial composition in mouse 
models of FD. A univariate regression analysis using the Bray-Curtis dissimilarity matrix 
was performed to determine variables associated with variation in gut microbial composition 
in mouse models of FD (Fig. 1A).  Four biological factors were found to influence gut 
microbial composition: age, sex, weight, and genotype (Fig. 1A). Among these factors, age 
and sex emerged as the primary contributors to variations in gut microbial composition (Fig. 
1A). Further investigation into these two biological factors through beta diversity analysis 
measured by Bray-Curtis revealed gut microbial composition variance due to mouse age and 
sex (Fig. 1B, 1C). Although both factors were shown to be significant to an equivalent level, 
the F value for sex is approximately twice that of age (Fig. 1B, 1C). This suggests that the 
variation between male and female mice exceeds the variation observed among young, 
middle-aged, and old mice by approximately two-fold. Moreover, distinct groupings were 
observed in the Principal Coordinate Analysis (PCoA) plots for sex but not age (Fig. 1B, 1C). 
In terms of age, although old and middle-aged mice clustered into two distinct groups along 
axis one, the young mice were dispersed across both groups, whereas in terms of sex, along 
axis one, male and female mice formed two clearly separated clusters. The same clustering 
pattern is observed across Jaccard and Weighted UniFrac beta diversity analyses of the sexes 
(Supplementary Fig. S2A and S2B). In terms of alpha diversity, there was no difference 
observed between male and female mice when sex was taken into consideration 
(Supplementary Fig. S1). Overall, these findings suggest that sex exerts a stronger influence 
on gut microbial composition changes compared to age.  

Microbial taxonomic composition and abundance vary between male and female FD 
mice.  To further investigate the microbial structures between female and male mice, we 
compared taxonomic composition within sex groups. The taxonomic composition varied at a 
phylum level between sex and also between genotypes for each sex (Fig. 2A). Interestingly, 
there was an overall increase in Bacteroidota abundance in female mice and Firmicutes in  
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male mice. DESeq was performed to assess differences in microbial composition at the ASV 
level in terms of relative abundances. Ten ASVs were different between male and female FD 
mice (Supplementary Fig. S3). Overall, male FD mice showed increased abundance of ASVs 
in phyla Firmicutes and Proteobacteria (Fig. 3). The pattern of Firmicutes abundances aligns 
with our beta diversity analysis. Contrarily, female FD mice showed increased abundance in 
phylum Bacteroidota. One genus of Firmicutes, Anaeroplasma, was shown to be particularly 
more abundant in female FD mice (23 |log2FoldChange|). 

 

FIG. 1 Sex and age were the strongest 
variables associated with changes to gut 
microbial diversity of FD mice.  (A) A 
univariate regression analysis using Bray-
Curtis was conducted on the mouse 
metadata to identify significant (p-
adjusted<0.05, PERMANOVA) biological 
factors influencing gut microbial 
composition (age, sex, weight, and 
genotype). Principal coordinates analysis 
plots illustrating the gut microbial 
composition of mouse (B) sex (p-adjusted = 
0.002, R2 = 0.14868, F = 5.4139, 
PERMANOVA) and (C) age (p-adjusted = 
0.002, R2 = 0.16221, F = 2.9042, 
PERMANOVA), with a 95% eclipse for 
each group in the variables. The boxplots 
show PCoA1 and PCoA2 scores 
distribution within each group, showing 
quartiles and outliers. (B-C) The sample 
sizes for sex (female, male) and age (young, 
middle, and old) were 26, 7, 18, 11, and 4, 
respectively. Wilcoxon rank-sum tests were 
performed. ns, p > 0.05; *p ≤ 0.05; **p ≤ 
0.01; ***p ≤ 0.001; ****p ≤ 0.0001. 
 
 
 

FIG. 2 Female FD mice have higher levels of Bacteroidota but lower levels of Firmicutes in their gut 
microbiota than male FD mice. Comparison of relative abundance (%) between female and male mice at a phylum 
level. The mouse sample size was 59, where n = 43 for females (22 controls and 21 mutants) and n = 16 for males 
(3 controls and 13 mutants). 
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Indicator species analysis identified species exclusive to male FD mice, but none was 

specific to female FD mice. ISA was performed to characterize unique species in each sex 
and revealed eight ASVs that are strongly associated with gut microbiome dysbiosis in male 
FD mice. Contrarily, female FD mice did not exhibit any signature species. These ASVs 
showed both a strong indicator value and statistical significance as outlined in Table 1. 
Notably, of these eight indicator species in male FD mice, three genera are from class 
Clostridia. 
 
TABLE. 1 Eight ASVs identified as strongly associated with gut microbiome dysbiosis in male FD mice, resolved 
to genus level. Indicator Species Analysis was performed on FD affected mice samples at the ASV level. Illustrated are 
ASVs from phylum to genus level after filtering for unidentified taxa, significant indicator value (stat > 0.85), and 
statistical significance (p < 0.05). n = 21 for females and n = 13 for males. 

Phylum Class:Order:Family:Genus  Sex Stat p-value  
Bacteroidota Bacteroidia:Bacteroidales:Muribaculaceae:Muribaculaceae Male 0.90 0.005 

 Bacteroidia:Bacteroidales:Prevotellaceae:Prevotellaceae_UC
G-001 

Male 0.89 0.005 

Campilobacterota Campylobacteria:Campylobacterales:Helicobacteraceae:Helic
obacter 

Male 0.88 0.005 

Cyanobacteria Vampirivibrionia:Gastranaerophilales: Gastranaerophilales 
Gastranaerophiales 

Male 0.87 0.005 

Firmicutes Clostridia:Oscillospirales:Oscillospiraceae:uncultured Male 0.90 0.005 
 Clostridia:Oscillospirales:Ruminococcaceae:Anaerotruncus1 Male 0.88 0.005 
 Clostridia:Oscillospirales:Ruminococcaceae:Anaerotruncus2 Male 0.88 0.005 

Proteobacteria Gammaproteobacteria:Burkholderiales:Sutterellaceae:Parasutt
erella 

Male 0.91 0.005 

 
Sex was not a main factor influencing functional diversity in FD mice. After 

investigation into sex differences in gut microbial composition of FD mice, functional 
analysis using PICRUSt was performed in order to determine whether metabolic pathways 
differ between sexes. There was a more diverse metabolic pathway abundance across samples 
in females compared to male FD mice, as observed by the widespread distribution in marginal 
density plots (Fig. 4A). There was a significant overlap between the sexes, suggesting that 
there was no clear separation in the abundance of metabolic pathways between male and 

FIG. 3 Male FD mice showed four 
decreased and six increased ASVs 
compared to female FD mice. DESeq 
was performed to compare the ASVs 
abundance at the genus level between 
male and female FD mice. Female FD 
mice data was set as reference. 
Identified ASVs were filtered for 
unidentified taxa and statistical 
significance (p-adjusted<0.05, 
|log2FoldChange|>1.5). Each ASV is 
annotated in their respective colour-
coded phylum, and in order of 
increasing log2FoldChange. n = 21 for 
females and n = 13 for males. 
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female FD mice. Fig. 4B displayed four upregulated pathways in male FD mice than in female 
FD mice: catechol degradation to 2-oxopent-4-enoate II, catechol degradation II (meta-
cleavage pathway), methyl ketone biosynthesis, and creatinine degradation II. Correlation 
experiment analysis was conducted to assess the relative abundance between the genus 
Romboutsia of FD mice and the four significant pathways of FD mice mentioned. The 
creatinine degradation II pathway had a significant positive correlation with the genus 
Rombutsia belonging to the phylum Firmicutes while the other pathways exhibited non-
significant and less robust correlations with Rombutsia (Fig. 4C).  
 

 

 
DISCUSSION 

In this study, we aimed to identify variables associated with gut microbiome dysbiosis, a 
key driver of metabolic dysfunction in individuals with FD, and to investigate their effects on 
the dynamics and metabolic functions of the gut microbial community. By characterizing the 
mouse model, we gain insight into its accuracy as a representation of FD and the extent to 
which findings can be extrapolated to human FD patients. 

Through univariate regression analysis using Bray-Curtis and representational PCoA 
plots, we found that sex is the biological variable most strongly associated with gut 
microbiome dysbiosis in FD mouse models (Fig. 1). Previous research on FD in human 

FIG. 4 Sex was not a main factor that influenced functional diversity and the genus Romboutsia positively correlated with 
creatinine degradation II pathway in male FD mice. (A) PCA plot of pathways predicted in total of 34 FD genotype samples 
(n = 13 for males and n = 21 for females) based on metabolic expression profiles, with females in red and males in blue. (B) Bar 
plot of log2FoldChange for pathways predicted in FD genotype using female as reference, with p-adjusted<0.05 and 
|log2FoldChange|>2, colour-coded by p-value significance. (C) Scatter plot of correlation between the significant pathways (B) 
relative abundance vs. genus Romboutsia relative abundance in a total of 34 FD mice samples (n = 34). Spearman’s rank 
correlation coefficient (ρ) was calculated and visualized with best-fit line and 95% confidence interval (significant level, p<0.05). 
Pathways were annotated by colour.  
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patients has suggested age as the most significant factor associated with FD, akin to many 
other neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease 
(PD) (12, 18, 19). Given the prominence of age as a factor in various human 
neurodegenerative diseases, including FD, we initially predicted that age would similarly be 
the most significant factor associated with FD in mice. While Cheney et al. did not find a 
significant relationship between microbial diversity and sex in FD humans, the experiment 
conditions were quite different between human FD and the mouse model FD studies (12). 
Variables associated with FD in mouse models may more readily align with variables 
associated with FD in humans, if the experimental conditions were similar. Regardless of 
alignment, such an endeavor would yield a more conclusive understanding of the factors 
contributing to FD in mouse models and whether they parallel those in humans.  

Through Bray-Curtis, Jaccard, and weighted UniFrac beta diversity analyses, we found 
that gut microbial diversity is significantly different between FD male and female mice (Fig. 
1B, Supplementary Fig. 2A, 2B). Cage effect is one of the main drivers of divergent gut 
microbial compositions (38). However, data points of different cages overlap in the beta-
diversity analysis of Cage ID and Sex (Supplementary Fig. 2C), indicating that other factors, 
such as sex, are also contributing to the divergent microbial composition across samples. 
While the different-cage effects could have skewed the results, we decided to only work with 
mice housed in different cages as there were limited cohoused mice available for comparison 
in the dataset. Collectively, these observation supports our initial hypothesis that the 
microbial distributions between male and female FD mice would be different. These results 
are also consistent with studies that investigated microbial diversities between sexes in other 
genetically-caused neurodegenerative diseases, such as autism spectrum disorder, where the 
two sexes harbour different gut microbiome structures (39).  Hence, the correlation between 
gut microbiome dysbiosis and sexes of FD mice indicates a potential role for the GBA in 
mediating disease progression differently between sexes.  

Previous studies have suggested that FD severity and environmental factors, such as 
housing style (cohoused vs. non-cohoused), influence the homogeneity of gut microbial 
composition in FD mice (12, 20). Through characterizing the microbial taxonomy between 
sexes, we observed an increase in Bacteriodota abundance and a decrease in Firmicutes 
abundance in female mice compared to male mice (Fig. 2). The taxonomic variations were 
expected and supported our hypothesis. However, previous studies have shown that female 
patients have higher phylum-level Firmicutes/Bacteriodota (F/B) ratios compared to male 
patients (40). The discrepancy shown in FD patients and mice studies suggests that the 
taxonomic composition trends in the mouse FD disease model are not yet translatable to 
represent that of the gut microbial dysbiosis patterns in humans. Moreover, the F/B ratio was 
greater between sexes than between genotypes (i.e. mutants and controls) of each sex (Fig. 
2). Previous studies have also demonstrated that higher F/B ratios were associated with 
several pathological conditions in humans, including obesity and amyotrophic lateral 
sclerosis (41, 42).  

Distinct microbial compositions between sexes were further characterized by ISA and 
DESeq. While ISA identified species that were signatures in male FD mice, female FD mice 
did not exhibit any indicator species (Table 1). The difference between the sexes in our ISA 
results supports our initial hypothesis that FD mice would exhibit different microbial 
characteristics among the levels of host variables that contribute to significant microbiome 
diversities between FD and healthy mice models. Furthermore, our results align with recent 
research which highlights those neurological diseases may be influenced by the sex-specific 
microbiota beyond the interindividual variation within each sex (43). As sex differences have 
been known to confer microbial diversity, particularly in the gut, the signature species of male 
FD mice may be reflective of the unique microbiota shaped by sex-specific factors such as 
hormones and gene activation (44). Furthermore, identified signature species may influence 
disease progression and response to treatment.  

Notably, three of eight species that were identified to be strongly associated with gut 
microbiome dysbiosis in male FD mice are of class Clostridia, making them an interesting 
target for further examination. As prevalent regulators of intestinal homeostasis, some species 
of Clostridia are known to be beneficial for gut health while others are known to contribute 
to microbial dysbiosis (45). Clostridia are involved in the regulation of amino acid 
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metabolism. Additionally, all identified Clostridia species from this analysis belong in the 
order Oscillospirales and subdivide into families Oscillospiraceae and Ruminococcaceae. 
Many genera of Oscillospirales are associated with the production of short-chain fatty acids 
(SCFA), as well as the reduction of chronic inflammation (46). However, increased 
abundance of Oscillospirales was found with dysbiotic microbiota of anti-N-methyl-D-
aspartate receptor encephalitis (NMDARE) microbiota recipient mice, along with 
compromised blood-brain barrier and higher susceptibility to inflammation (47). Bacteria of 
family Ruminococcaceae are involved in the promotion of biosynthesis of serotonin in the 
intestine to aid in gastrointestinal motility (48). In another study, Ruminococcaceae has been 
shown to affect the speed of disease progression in PD, specifically on global cognitive 
functions (49). In the case of irritable bowel syndrome (IBS), the changes in abundance of 
Ruminococcaeae species have demonstrated their influence on the brain regions of patients 
(48). The interaction between gut microbiota and the central nervous system depicted in IBS 
reflects the gut-brain axis dynamics seen in FD. The presence of Oscillospiraceae and 
Ruminococcaeae as indicator species for male FD mice could suggest that their disproportion 
is linked to gut microbiome dysbiosis, akin to the patterns observed in NMDARE, PD, and 
IBS.  

Through DESeq analysis, we identified ten genera of microbes in four major phyla that 
displayed significantly different abundances between male and female FD mice (Fig. 3). With 
the reference group as female FD mice, male mice presented four genera with decreased 
abundance and six genera with increased abundance. Among the identified major phyla, the 
increase of phylum Proteobacteria in male FD mice is consistent with our beta diversity 
analysis. As an important constituent of the core gut microbiota, the genus Parasutterella of 
Proteobacteria contributes to the regulation of amino acid, bilirubin, purine, bile acid, and 
cholesterol metabolisms (50). Interestingly, a study using murine infection models revealed 
that decreased abundance of Parasutterella is correlated to positive health outcomes after 
infection, suggesting its potential role in homeostatic regulations (51). Notably, we also 
observed an increased abundance of Campylobacteria in female FD mice, specifically 
Helicobacter. This opportunistic bacterium modulates the gut microbiota by protecting the 
host against some allergic diseases, autoimmune disorders, and IBS (52).  

Additionally, Anaeroplasma, a genus from phylum Firmicutes, has over twenty 
|log2FoldChange| (Fig. 3). The significant change in abundance between the sexes 
underscores its potential role in the sex-specific microbiota. Bacterial species of genus 
Anaeroplasma are involved in gut homeostasis regulation and inflammation mediation by 
promoting the expression of immune-regulatory transforming growth factor beta and mucosal 
immunoglobulin A (53). 

Variations in microbial abundances, particularly Parasutterella, Helicobacter, and 
Anaeroplasma between the sexes indicate the interplay between host sex and gut microbiota 
composition, which could significantly influence the pathophysiology of FD. Extended 
analyses on the sex-specific microbial profiles may have implications for understanding how 
sex hormones influence gut microbiota composition and function. 

 Predictive functional analysis using PICRUSt provided a comprehensive overview 
of the metabolic pathways within the gut microbiomes of FD mice. Despite the clear 
taxonomic and diversity distinctions identified between male and female mice, our analysis 
indicates that these differences do not necessarily translate into significant variations in 
metabolic or functional pathways. These findings did not support our hypothesis, which was 
that levels of host variables significantly associated with microbiota diversities will display 
different predicted metabolic pathways. In defiance of the pronounced sex-based distinctions 
observed in beta diversity and in the taxonomic compositions of the microbiomes, predictive 
functional analysis revealed considerable overlap in the metabolic pathways present in both 
male and female FD mice. This overlap suggests that while the microbial communities are 
distinct, the functional outcomes are similar between sexes. Despite no clear distinction 
between sexes (Fig. 4A), we observed four significant pathways that were upregulated in 
males than females (Fig. 4B). Among these pathways, catechol degradation II is a 
superpathway of catechol degradation 2-oxopent-4-enoate II (54), and this meta-cleavage 
pathway is a key process involved in breaking down aromatic compounds (55). Degradation 
of aromatic compounds such as catechol can be linked to energy production and the formation 
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of intermediary metabolites like SCFAs (56). Alterations in SCFA levels are linked to 
systemic inflammation which may affect neuroinflammation and gut-brain axis signaling, and 
potentially influence neurodegenerative disorders (57, 58). Catechols and their metabolites 
play a significant role in neurological function, and dysregulation of catecholic 
neurotransmitters is associated with SCFA production and PD (59–61), but there is no direct 
evidence suggesting that catechol degradation 2-oxopent-4-enoate II or catechol degradation 
II pathway directly influence neurological function or neurodegenerative diseases. There are 
no implications that the engineered methyl ketone biosynthesis pathway is associated with 
neurodegenerative pathways or FD. Creatinine degradation II is involved in the degradation 
of creatinine, which is derived from creatine phosphate in muscle (54, 62). Creatinine levels 
in the blood are linked to the regulation of glucose in humans (63) and impairment in glucose 
is recognized as one of the significant characteristics of various neurodegenerative conditions 
including AD, PD, and Huntington’s Disease (HD) (64). Additionally, creatine, utilized to 
store and supply energy to muscle cells, may influence inflammation and altered 
neurotransmission after mild traumatic brain injury (65). A clinical trial demonstrated that 
creatinine had the potential to slow down the progression of PD in patients, leading to 
considerations for further investigation through Phase III trials (66). In another study, dietary 
creatine supplementation was associated with increased survival rates and delayed 
accumulation of huntingtin-positive aggregates in a mouse model of HD (67). Although 
previous studies suggest a connection between creatine and neurodegenerative diseases, there 
is no evidence to support that the creatinine degradation II pathway is directly associated with 
neurodegenerative diseases. However, based on the observed functions related to these 
pathways, three of the four significant pathways that were upregulated in male FD mice than 
female FD mice may potentially be linked to neurodegenerative diseases like FD.  

A Spearman correlation analysis was performed on the relative abundances of significant 
genera in both sexes of FD mice and four key metabolic pathways identified from functional 
analysis. Notably, there was a strong correlation between genus Romboutsia and creatinine 
degradation pathway II. Serum creatinine, which is linked to impaired glucose regulation of 
both sexes in humans (63), shows similar biochemical interactions in the gut, particularly 
with Romboutsia ileaslis CRIBT (68). This gut bacterium, a crucial component of the small 
intestine in rats, is involved in glucose degradation (68). Interestingly, in the context of other 
neurological disorders, Romboutsia, known for SCFA production, shows decreased levels in 
the gut microbiomes of human subjects with traumatic brain injury (69) and in fecal samples 
associated with AD (70). Overall, a strong correlation exists between genus Romboutsia and 
creatinine degradation II in impacting glucose metabolism, with implications for its potential 
role in FD and other neurodegenerative diseases.  

 
Limitations While we identified sex as a significant contributor to microbial composition 
differences in FD mice, the extension of these findings to FD in humans requires further 
investigation and validation. A notable constraint in this study was the limited number of 
male samples in the rarified dataset. While statistical interpretations can be obtained between 
the gut microbiota of FD male and female mice, an unbalanced dataset can lead to biases 
towards the dependent variable with higher abundance (i.e. FD female mice).  Another 
constraint in this study was the lack of cohoused samples in the dataset. While there was not 
a distant gut microbiome separation across mice housed in different cages, we cannot rule out 
the possibility that the cage effect is an additional factor that contributes to the differences in 
gut microbial composition. Collectively, these limitations may reduce the strength of the 
conclusions that can be drawn regarding sex differences and their biological relevance in FD 
mice. 
 
Conclusions This study investigated and identified host variables that significantly 
contributed to variations in gut microbial diversity and metabolic pathways between FD mice 
and their healthy counterparts. Sex was determined to be the primary variable associated with 
gut dysbiosis in FD mice that were housed separately. Interestingly, the richness and evenness 
of gut microbiota were similar between sexes. However, we observed greater variations in 
taxonomic composition between sexes than genotypes. Moreover, indicator species analysis 
revealed eight species exclusive to male FD mice, with microbial relative abundances 
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indicating four downregulated and six upregulated species in male FD mice compared to their 
female counterparts. Despite differences in microbial taxonomic compositions, investigation 
into microbial function suggested no distinct disparities in predicted metabolic pathways 
between sexes. However, three of the four significant pathways upregulated in male FD mice 
may be linked to pathways associated with neurodegenerative diseases like FD. Among the 
four pathways, there was a significant correlation between the abundance of genus 
Romboutsia and creatinine degradation pathway II. While sex influences microbial 
composition in FD mice, it may not be the primary driver of changes in microbial function. 
Given the variations in the factors influencing gut microbiome alterations in humans and 
mice, as well as disparities in experimental settings, we cannot conclude that the mouse model 
can accurately represent FD in humans. However, future studies comparing FD in both 
species under controlled conditions could provide clearer insights into the relevance of mouse 
models for human FD. Since sex influences microbial composition in FD mice, exploring its 
impact on FD patients could guide the development of sex-specific treatments. 
 
Future Directions Based on our microbial function results, there is no strong evidence for 
distinctive metabolic pathway predictions between FD mice of different sexes (Fig. 4A). This 
is likely a consequence of working on a dataset with imbalanced FD male and female mice 
samples. Future studies can recruit an even distribution of FD male and female mice and 
repeat methods presented in this study to more accurately infer functional patterns in the gut 
between FD male and female mice. 

Having observed gut microbiome differences between FD male and female mice (Fig. 2 
and 3), future studies could explore how genetic and hormonal variations between sexes 
influence the gut microbiome, with emphasis on identifying any sex-dependent patterns that 
may have therapeutic implications. Comparative analyses of the gut microbiota and functions 
between FD mice and humans can further be performed to explore whether FD mouse models 
are a good representation of FD humans. Such research could inform practices for different 
treatments in FD males and females, if some levels of similarities are found. As this study 
highlights the complexity of microbiomes in FD, identifying additional host variables that 
may contribute to the metabolic functionality of the gut microbiome will be essential for 
advancing the understanding of FD and improving patient outcomes.  
 
 
ACKNOWLEDGEMENTS  

We extend our gratitude to Dr. Evelyn Sun and Avril Metcalfe-Roach, along with the entire 
MICB 475 teaching team, for their mentorship, guidance, and unwavering support throughout 
this project. Additionally, we acknowledge the contribution of Cheney et al. for providing the 
16S rRNA microbial sequencing data and metadata used in our study. Furthermore, we would 
like to thank Chris Lee for his generosity in sharing with us the R script code for univariate 
regression analysis. Lastly, we express our appreciation to the University of British Columbia 
Department of Microbiology and Immunology for generously providing the necessary space, 
resources, and funds for this project. We would also like to thank two anonymous reviewers 
for constructive feedback on this manuscript. 
 
CONTRIBUTIONS 
M: ran PICRUSt2 functional analysis, completed code for downstream R analysis, completed code for 
correlation analysis, generated corresponding figures in Figure 4A, 4B, and 4C,, wrote methods, results, 
and discussion, section relating to PICRUSt2 and correlation analysis, and contributed to study 
limitations and future directions.  
O: contributed to QIIME2 pipeline denoising and clustering, wrote code for ISA and DESeq2, generated 
corresponding figures in Table 1, Figure 3, and Supplementary Figure 3, wrote methods, results, and 
discussion section relating to ISA and DeSeq2, and contributed to abstract and references.  
A: contributed to QIIME2 pipeline taxonomic analysis, alpha-rarefaction, generation of the phyloseq 
object and rarecurve, completed code for univariate regression analysis, generated corresponding figures 
in Figure 1A, wrote methods for familial dysautonomia dataset - univariate regression analysis, results 
for univariate regression analysis and beta and alpha diversity, discussion section relating to univariate 
regression analysis and beta diversity, and contributed to the conclusion. 
Z: contributed to QIIME2 pipeline demultiplexing, contributed towards writing code for taxonomic 
analysis, beta and alpha diversity, and generating corresponding figures in Figure 1B, 1C, 2, and 



UJEMI+ Jang et al. 

September 2024   Volume 10:1-14 Undergraduate Research Article https://jemi.microbiology.ubc.ca/ 12 

Supplementary Figure 1 and 2, wrote methods, results, and discussion section relating to taxonomic 
composition, and contributed to abstract and the conclusion.  
K: contributed to writing code for beta and alpha diversity, and generating corresponding figures in 
Figure 1B, 1C, and Supplementary Figure 1 and 2, wrote discussion section relating to alpha and beta 
diversity, introduction, contributed to study limitations, future directions, and completed references. 
All members contributed to editing and refining the manuscript.  
 

REFERENCES

1. Sisodia SS. 1999. Series Introduction: Alzheimer’s disease: perspectives for the new millennium. J 
Clin Invest 104:1169–1170. 

2. DeMaagd G, Philip A. 2015. Parkinson’s Disease and Its Management. Pharm Ther 40:504–532. 
3. Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H. 2017. Familial dysautonomia: History, 

genotype, phenotype and translational research. Prog Neurobiol 152:131–148. 
4. Tonholo-Silva ER, Takahashi SI, Yoshinaga L. 1994. Familial dysautonomia (Riley-Day 

syndrome). Arq Neuropsiquiatr 52:103–105. 
5. Bar-Aluma B-E. 1993. Familial Dysautonomia, p. . In Adam, MP, Feldman, J, Mirzaa, GM, Pagon, 

RA, Wallace, SE, Bean, LJ, Gripp, KW, Amemiya, A (eds.), GeneReviews®. University of 
Washington, Seattle, Seattle (WA). 

6. Anderson SL, Coli R, Daly IW, Kichula EA, Rork MJ, Volpi SA, Ekstein J, Rubin BY. 2001. 
Familial dysautonomia is caused by mutations of the IKAP gene. Am J Hum Genet 68:753–758. 

7. Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, Cuajungco MP, Liebert CB, 
Chadwick B, Idelson M, Reznik L, Robbins C, Makalowska I, Brownstein M, Krappmann D, 
Scheidereit C, Maayan C, Axelrod FB, Gusella JF. 2001. Tissue-specific expression of a splicing 
mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68:598–605. 

8. Kojic M, Abbassi NEH, Lin T-Y, Jones A, Wakeling EL, Clement E, Nakou V, Singleton M, 
Dobosz D, Kaliakatsos M, Glatt S, Wainwright BJ. 2023. A novel ELP1 mutation impairs the 
function of the Elongator complex and causes a severe neurodevelopmental phenotype. J Hum Genet 
68:445–453. 

9. Bauer F, Hermand D. 2012. A coordinated codon-dependent regulation of translation by Elongator. 
Cell Cycle 11:4524–4529. 

10. Carabotti M, Scirocco A, Maselli MA, Severi C. 2015. The gut-brain axis: interactions between 
enteric microbiota, central and enteric nervous systems. Ann Gastroenterol Q Publ Hell Soc 
Gastroenterol 28:203–209. 

11. Calabrò S, Kankowski S, Cescon M, Gambarotta G, Raimondo S, Haastert-Talini K, Ronchi G. 
2023. Impact of Gut Microbiota on the Peripheral Nervous System in Physiological, Regenerative and 
Pathological Conditions. Int J Mol Sci 24:8061. 

12. Cheney AM, Costello SM, Pinkham NV, Waldum A, Broadaway SC, Cotrina-Vidal M, Mergy 
M, Tripet B, Kominsky DJ, Grifka-Walk HM, Kaufmann H, Norcliffe-Kaufmann L, Peach JT, 
Bothner B, Lefcort F, Copié V, Walk ST. 2023. Gut microbiome dysbiosis drives metabolic 
dysfunction in Familial dysautonomia. Nat Commun 14:218. 

13. Adelman MW, Woodworth MH, Langelier C, Busch LM, Kempker JA, Kraft CS, Martin GS. 
2020. The gut microbiome’s role in the development, maintenance, and outcomes of sepsis. Crit Care 
Lond Engl 24:278. 

14. Cook TM, Mansuy-Aubert V. 2022. Communication between the gut microbiota and peripheral 
nervous system in health and chronic disease. Gut Microbes 14:2068365. 

15. Bar Aluma B-E, Norcliffe-Kaufmann L, Sarouk I, Dagan A, Ashkenazi M, Bezalel Y, Vilozni D, 
Lahad A, Efrati O. 2019. Resting Energy Expenditure in Patients With Familial Dysautonomia: A 
Preliminary Study. J Pediatr Gastroenterol Nutr 68:422–427. 

16. Kowalski K, Mulak A. 2019. Brain-Gut-Microbiota Axis in Alzheimer’s Disease. J 
Neurogastroenterol Motil 25:48–60. 

17. Thangaleela S, Sivamaruthi BS, Kesika P, Bharathi M, Chaiyasut C. 2022. Role of the Gut–Brain 
Axis, Gut Microbial Composition, Diet, and Probiotic Intervention in Parkinson’s Disease. 
Microorganisms 10:1544. 

18. Guerreiro R, Bras J. 2015. The age factor in Alzheimer’s disease. Genome Med 7:106. 
19. Goetz CG, Tanner CM, Stebbins GT, Buchman AS. 1988. Risk factors for progression in 

Parkinson’s disease. Neurology 38:1841–1841. 
20. Khatra A, Shee J, Wang A, Wang WC. 2023. Increased pathological severity of Familial 

Dysautonomia enriches murine gut microbial composition. Undergrad J Exp Microbiol Immunol 9. 
21. Vandamme TF. 2014. Use of rodents as models of human diseases. J Pharm Bioallied Sci 6:2–9. 
22. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm 

EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown 
CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein 
PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, 
Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, 
Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang 
KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, 
Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, 



UJEMI+ Jang et al. 

September 2024   Volume 10:1-14 Undergraduate Research Article https://jemi.microbiology.ubc.ca/ 13 

McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, 
Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen 
LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, 
Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-
Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters 
W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, 
Zhang Y, Zhu Q, Knight R, Caporaso JG. 2019. Reproducible, interactive, scalable and extensible 
microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. 

23. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: 
High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. 

24. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The 
SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic 
Acids Res 41:D590–D596. 

25. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley 
J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. 2012. Ultra-high-throughput 
microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. 

26. Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes 
A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson 
D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. 2019. Welcome to 
the Tidyverse. J Open Source Softw 4:1686. 

27. McMurdie PJ, Holmes S. 2013. phyloseq: An R Package for Reproducible Interactive Analysis and 
Graphics of Microbiome Census Data. PLOS ONE 8:e61217. 

28. Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos 
P, Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho 
G, Chirico M, Caceres MD, Durand S, Evangelista HBA, FitzJohn R, Friendly M, Furneaux B, 
Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette M-H, Cunha ER, Smith T, Stier A, Braak 
CJFT, Weedon J. 2022. vegan: Community Ecology Package (2.6-4). 

29. Wickham H, François R, Henry L, Müller K, Vaughan D, Software P, PBC. 2023. dplyr: A 
Grammar of Data Manipulation (1.1.4). 

30. Wickham H. 2016. ggplot2. Springer International Publishing, Cham. 
http://link.springer.com/10.1007/978-3-319-24277-4. Retrieved 10 April 2024. 

31. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, 
Webb CO. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–
1464. 

32. R Core Team. 2021. R: A Language and Environment for Statistical Computing. R Found Stat 
Comput. 

33. Cáceres MD, Legendre P. 2009. Associations between species and groups of sites: indices and 
statistical inference. Ecology 90:3566–3574. 

34. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-
seq data with DESeq2. Genome Biol 15:550. 

35. Neuwirth E. 2022. RColorBrewer: ColorBrewer Palettes (1.1-3). 
36. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, 

Langille MGI. 2020. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. 
37. Yang C, Mai J, Cao X, Burberry A, Cominelli F, Zhang L. 2023. ggpicrust2: an R package for 

PICRUSt2 predicted functional profile analysis and visualization. Bioinforma Oxf Engl 39:btad470. 
38. Singh G, Brass A, Cruickshank SM, Knight CG. 2021. Cage and maternal effects on the bacterial 

communities of the murine gut. Sci Rep 11:9841. 
39. Hokanson KC, Hernández C, Deitzler GE, Gaston JE, David MM. 2024. Sex shapes gut–

microbiota–brain communication and disease. Trends Microbiol 32:151–161. 
40. Koliada A, Moseiko V, Romanenko M, Lushchak O, Kryzhanovska N, Guryanov V, Vaiserman 

A. 2021. Sex differences in the phylum‐level human gut microbiota composition. BMC Microbiol 
21:131. 

41. Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, Balamurugan R. 2020. 
The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 
12:1474. 

42. Suganya K, Koo B-S. 2020. Gut–Brain Axis: Role of Gut Microbiota on Neurological Disorders and 
How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain 
Functions. Int J Mol Sci 21:7551. 

43. Cox LM, Abou-El-Hassan H, Maghzi AH, Vincentini J, Weiner HL. 2019. The sex-specific 
interaction of the microbiome in neurodegenerative diseases. Brain Res 1724:146385. 

44. Jaggar M, Rea K, Spichak S, Dinan TG, Cryan JF. 2020. You’ve got male: Sex and the microbiota-
gut-brain axis across the lifespan. Front Neuroendocrinol 56:100815. 

45. Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A. 2013. Commensal Clostridia: leading players 
in the maintenance of gut homeostasis. Gut Pathog 5:23. 

46. Gophna U, Konikoff T, Nielsen HB. 2017. Oscillospira and related bacteria - From metagenomic 
species to metabolic features. Environ Microbiol 19:835–841. 

47. Gong X, Ma Y, Deng X, Li A, Li X, Kong X, Liu Y, Liu X, Guo K, Yang Y, Li Z, Wei H, Zhou 
D, Hong Z. 2024. Intestinal dysbiosis exacerbates susceptibility to the anti-NMDA receptor 



UJEMI+ Jang et al. 

September 2024   Volume 10:1-14 Undergraduate Research Article https://jemi.microbiology.ubc.ca/ 14 

encephalitis-like phenotype by changing blood brain barrier permeability and immune homeostasis. 
Brain Behav Immun 116:34–51. 

48. Labus JS, Osadchiy V, Hsiao EY, Tap J, Derrien M, Gupta A, Tillisch K, Le Nevé B, Grinsvall 
C, Ljungberg M, Öhman L, Törnblom H, Simren M, Mayer EA. 2019. Evidence for an association 
of gut microbial Clostridia with brain functional connectivity and gastrointestinal sensorimotor 
function in patients with irritable bowel syndrome, based on tripartite network analysis. Microbiome 
7:45. 

49. Cilia R, Piatti M, Cereda E, Bolliri C, Caronni S, Ferri V, Cassani E, Bonvegna S, Ferrarese C, 
Zecchinelli AL, Barichella M, Pezzoli G. 2021. Does Gut Microbiota Influence the Course of 
Parkinson’s Disease? A 3-Year Prospective Exploratory Study in de novo Patients. J Park Dis 11:159–
170. 

50. Ju T, Kong JY, Stothard P, Willing BP. 2019. Defining the role of Parasutterella, a previously 
uncharacterized member of the core gut microbiota. ISME J 13:1520–1534. 

51. Nagarajan A, Scoggin K, Gupta J, Threadgill DW, Andrews-Polymenis HL. 2023. Using the 
collaborative cross to identify the role of host genetics in defining the murine gut microbiome. 
Microbiome 11:149. 

52. Sitkin S, Lazebnik L, Avalueva E, Kononova S, Vakhitov T. 2022. Gastrointestinal microbiome 
and Helicobacter pylori: Eradicate, leave it as it is, or take a personalized benefit–risk approach? World 
J Gastroenterol 28:766–774. 

53. Beller A, Kruglov A, Durek P, von Goetze V, Werner K, Heinz GA, Ninnemann J, Lehmann K, 
Maier R, Hoffmann U, Riedel R, Heiking K, Zimmermann J, Siegmund B, Mashreghi M-F, 
Radbruch A, Chang H-D. 2020. Specific microbiota enhances intestinal IgA levels by inducing TGF-
β in T follicular helper cells of Peyer’s patches in mice. Eur J Immunol 50:783–794. 

54. Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, 
Kothari A, Kubo A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti 
P, Weaver DS, Weerasinghe D, Zhang P, Karp PD. 2014. The MetaCyc database of metabolic 
pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 
42:D459–D471. 

55. Harayama S, Rekik M, Ngai KL, Ornston LN. 1989. Physically associated enzymes produce and 
metabolize 2-hydroxy-2,4-dienoate, a chemically unstable intermediate formed in catechol 
metabolism via meta cleavage in Pseudomonas putida. J Bacteriol 171:6251–6258. 

56. Yu D, Yang Y, Long J, Xu W, Cai Q, Wu J, Cai H, Zheng W, Shu X. 2021. Long-Term Diet 
Quality and Gut Microbiome Functionality: A Prospective, Shotgun Metagenomic Study Among 
Urban Chinese Adults. Curr Dev Nutr 5. 

57. Silva YP, Bernardi A, Frozza RL. 2020. The Role of Short-Chain Fatty Acids From Gut Microbiota 
in Gut-Brain Communication. Front Endocrinol 11:25. 

58. Huang P, Zhang P, Du J, Gao C, Liu J, Tan Y, Chen S. 2023. Association of fecal short-chain fatty 
acids with clinical severity and gut microbiota in essential tremor and its difference from Parkinson’s 
disease. Npj Park Dis 9:1–8. 

59. Yeh T-K, Chang C-Y, Hu C-Y, Yeh T-C, Lin M-Y. 2009. Association of catechol-O-
methyltransferase (COMT) polymorphism and academic achievement in a Chinese cohort. Brain Cogn 
71:300–305. 

60. Baert F, Matthys C, Maselyne J, Van Poucke C, Van Coillie E, Bergmans B, Vlaemynck G. 2021. 
Parkinson’s disease patients’ short chain fatty acids production capacity after in vitro fecal fiber 
fermentation. Npj Park Dis 7:1–14. 

61. Bonifácio MJ, Palma PN, Almeida L, Soares-da-Silva P. 2007. Catechol-O-methyltransferase and 
Its Inhibitors in Parkinson’s Disease. CNS Drug Rev 13:352–379. 

62. Wyss M, Kaddurah-Daouk R. 2000. Creatine and creatinine metabolism. Physiol Rev 80:1107–
1213. 

63. Farasat T, Sharif S, Naz S, Fazal S. 2015. Significant association of serum creatinine with HbA1C 
in impaired glucose tolerant Pakistani subjects. Pak J Med Sci 31:991–994. 

64. Han R, Liang J, Zhou B. 2021. Glucose Metabolic Dysfunction in Neurodegenerative Diseases—
New Mechanistic Insights and the Potential of Hypoxia as a Prospective Therapy Targeting Metabolic 
Reprogramming. Int J Mol Sci 22:5887. 

65. Ainsley Dean PJ, Arikan G, Opitz B, Sterr A. 2017. Potential for use of creatine supplementation 
following mild traumatic brain injury. Concussion 2:CNC34. 

66. NINDS NET-PD Investigators. 2006. A randomized, double-blind, futility clinical trial of creatine 
and minocycline in early Parkinson disease. Neurology 66:664–671. 

67. Ferrante RJ, Andreassen OA, Jenkins BG, Dedeoglu A, Kuemmerle S, Kubilus JK, Kaddurah-
Daouk R, Hersch SM, Beal MF. 2000. Neuroprotective Effects of Creatine in a Transgenic Mouse 
Model of Huntington’s Disease. J Neurosci 20:4389–4397. 

68. Gerritsen J, Hornung B, Renckens B, van Hijum SAFT, Martins dos Santos VAP, Rijkers GT, 
Schaap PJ, de Vos WM, Smidt H. 2017. Genomic and functional analysis of Romboutsia ilealis 
CRIBT reveals adaptation to the small intestine. PeerJ 5:e3698. 

69. Du D, Tang W, Zhou C, Sun X, Wei Z, Zhong J, Huang Z. 2021. Fecal Microbiota Transplantation 
Is a Promising Method to Restore Gut Microbiota Dysbiosis and Relieve Neurological Deficits after 
Traumatic Brain Injury. Oxid Med Cell Longev 2021:e5816837. 

70. Ling Z, Zhu M, Yan X, Cheng Y, Shao L, Liu X, Jiang R, Wu S. 2020. Structural and Functional 
Dysbiosis of Fecal Microbiota in Chinese Patients With Alzheimer’s Disease. Front Cell Dev Biol 8. 


