SUPPLEMENTAL MATERIAL

FIG. S1 Whole plasmid sequence of TAAK-A54. Colour-coded according to the plasmid map.

Leaend			
Ori	CAP binding site	lac promoter	lac operator
M13 rev	T3 promoter	Signal peptide	Non-conserved region
Auto chaperone region	6x Histidine	Chitin-binding domain (CBD)	Linker region
β – domain	f1 ori	AmpR promoter	AmpR

5'

ACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAA CTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTA GGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCT GTTACCAGTGGCTGCCGGTGGCGGTAAGTCGTGTCTTACCGGGTTGGACTCA AGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGGTTCGTGC ACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTG AGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGG TAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATT TTTGTGATGCTCGTCAGGGGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGC CTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTT GCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAG CGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCT GGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGT GAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTA **TGTTG**TGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCAT GATTACGCCAAGCGCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGAGCTCC ACCGCGGTGGCGGCCGCCTGCCGCCTTCAGGCGGGGGGGCGGCCCGGCGCAGGCT GCCGAAGCGCTCGGCGAACTGCCGGGTGAAGACGGCGCCGAAGAAGAAAATCTG CGCTGAATAATAGATCCACAGCAGCAGCGCGATCAGCGAACCCGCCGCCCCGTAC GCCGATACCGCCGCGCCGCGTCCCAGGTACAGGCCGATGCCCCATTTGCCGGCC AGGAACAGCGCCGCGGTCACGATCGCGCCGGGTATCACGTCGAGCCAGGGAATG CGCTTGCTGGGCAGCAGCTTGTAGACCACGGCGAACAGCGCGGTCACCACCGCG AACGAAAAGAGGTTCGACAGCCAGTCGGCCGCCATCGCGAAGGCCGATGTGCTC

CATAGATCGCCGTAGTATCCCTTGGCCGCGCCCAGCGCCGCGTTGAGGGTCAGC GAAAGCAGCAGGAACAGCGCCAGCACCAGCACCAGGCCGAATGACAGCATGCGG CTGCGCACCAGCCCCTGCAAACCGCTCTTGTCTTCCTTGACGTCGTGCGCAATTCT CATAGGAAAGCACGGCTATTCAGGAAAGCTCTTGTTGGGCCTCGGACTTCATCCG GCATTCATTATGACGTGGGCTTTGGATACTGCGCAAATCCCCGCATGGCTCGTGC CTGATCCCGCCGGGACGCAGTCGTTTCCTTCGCGTCACCGGCGTCGTACGGCAG GCGGGTCGGTTTGTTCAACTTCTCTTTTGGTGGCACATGTATCTCGATAGATTCCG TCAATGTCCGTCTTCCTTGCAGATCCCGCGTTCCGCGTGGCGCCTGCATGCGCTG GCCGCAGCTCTGGCGCTGGCCGGCATGGCCCGGCTGGCGCCCGCGGCGCGCA GGCGCCGCAGCCGCCGTGGCCGCTAGAGAGGCCCATCATCACCACCACG GTGGCGGTGGCAGCTTCCCGCAATGGCGTGAGAACCAGGCATATCGGGTCGAC AACAGCGGTTGGACGCCACCGGTAGCCTTCACCCTCTGGCGTCCGCTGGGTGGT GGCGGTAGCGCCTCTTACAAGACCCTGACCCTGCAAACCCTGGACGGCAACGG CGTGTTCGTGCTGAACACCAACGTCGCCGCCGGGCAGAACGACCAGTTGCGGGT CACCGGCCGCCGATGGCCAGCACCGCGTGCTGGTGCGCAATGCCGGAGGCG AGGCCGACAGCCGGGGGGCGCCCGCCTGGGCCTGGTGCATACCCAGGGGCAGGG CAACGCCACCTTCCGGCTGGCCAACGTCGGCAAGGCGGTTGACCTGGGCACGT **GGCGCTACAGCCTGGCG**GAGGATCCGAAGACGCATGTCTGGAGCTTGCAGCGC GCGGGCCAGGCCCTGTCGGGGGGCGGCCAATGCCGCCGTGAACGCGGCGGATCT TTCCAGCATCGCCCTGGCCGAGTCCAACGCGCTGGACAAGCGCCTGGGCGAGC CAGCAGATCAGCAACCGCCACGCCCGCGCCTACGACCAGACGGTCAGCGGGCT GGAGATCGGCCTGGACCGTGGCTGGAGCGCGCGGGGGGGCGCTGGTACGCCG GCGGCCTGCTCGGCTACACCTATGCCGACCGCACCTATCCCGGCGACGGTGGC GGCAAGGTCAAGGGCCTGCACGTCGGCGGCTACGCCGCCTATGTCGGCGATGG CGGCTACTATCTCGACACCGTGCTGCGGCTGGGCCGCTACGATCAGCAATACAA CATTGCCGGCACCGATGGCGGCCGCGTCACCGCCGACTACCGCACAAGCGGCG CCGCATGGTCGCTCGAAGGCGGGCGCCGGTTCGAGCTGCCCAACGACTGGTTC GCCGAACCGCAGGCCGAGGTCATGCTGTGGCGCACGTCAGGCAAGCGCTATCG CGCCAGCAATGGCCTGCGCGTCAAGGTGGACGCCAACACCGCCACGCTGGGCC GCCTGGGCTTGCGCTTCGGCCGCCGCATCGCCCTGGCCGGCGGCAACATCGTG CAGCCCTACGCCAGGCTCGGCTGGACGCAGGAGTTCAAAAGCACGGGCGATGT GCGCACCAATGGCATTGGCCATGCCGGCGCGGGCGCGCCACGGCCGCGTGGAAC TGGGCGCGGGCGTCGACGCCGCGTTGGGCAAGGGGCACAACCTCTATGCTTCG TACGAGTACGCGGCGGCGACCGGATCAACATTCCGTGGTCGTTCCACGCCGGC CCGGTACCCAATTCGCCCTATAGTGAGTCGTATTACGCGCGCTCACTGGCCGTCG TTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCA GCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGC CCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGAAATTGTAAGCGTTAATATT TTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTTAACCAATAGGCC GAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGT

TGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAG GGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATC AAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGC AAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTG CGCGTAACCACCACCCGCCGCGCGCTTAATGCGCCGCTACAGGGCGCGCGTCAGGT GGCACTTTTCGGGGGAAATGTGCGCGGGAACCCCTATTTGTTTATTTTTCTAAATACAT TCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGA AAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTGCG GCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGC TGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGT AAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAA GTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCG GTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAA AAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAG CTAACCGCTTTTTTGCACAACATGGGGGGATCATGTAACTCGCCTTGATCGTTGGGA ACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTA CCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTG CGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGC GTGGGTCTCGCGGTATCATTGCAGCACTGGGGGCCAGATGGTAAGCCCTCCCGTAT CGTAGTTATCTACACGACGGGGGGGGCGAGTCAGGCAACTATGGATGAACGAAATAGACAG ATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTA CTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTG AAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCAC TGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC 3'

FIG. S2 Amino acid sequence of CBD-BrkA. Colour-coded according to the plasmid map.

Legend					
Signal peptide	Non-conserved region	Auto chaperone region	6x Histidine		
Chitin-binding domain (CBD)	Linker region	β – domain			

Ν

MYLDRFRQCPSSLQIPRSAWRLHALAAALALAGMARLAPAAAQAPQPPVAAREAH HHHHHGGGGSFPQWRENQAYRVDDGVTYEGLRYLCLQAHTSNSGWTPPVAFTLW RPLGGGGSASYKTLTLQTLDGNGVFVLNTNVAAGQNDQLRVTGRADGQHRVLVRN AGGEADSRGARLGLVHTQGQGNATFRLANVGKAVDLGTWRYSLAEDPKTHVWSLQ RAGQALSGAANAAVNAADLSSIALAESNALDKRLGELRLRADAGGPWARTFSERQ QISNRHARAYDQTVSGLEIGLDRGWSASGGRWYAGGLLGYTYADRTYPGDGGGKV KGLHVGGYAAYVGDGGYYLDTVLRLGRYDQQYNIAGTDGGRVTADYRTSGAAWSL EGGRRFELPNDWFAEPQAEVMLWRTSGKRYRASNGLRVKVDANTATLGRLGLRFG RRIALAGGNIVQPYARLGWTQEFKSTGDVRTNGIGHAGAGRHGRVELGAGVDAALG KGHNLYASYEYAAGDRINIPWSFHAGYRYSF*

С

FIG. S3 Ponceau-S staining corresponding to the Western blot shown in Figure 2 indicates consistent protein loads across all lanes. Picture was taken with a digital camera.

FIG. S4 Changes in OD₆₀₀ of TAAK-a54 cultures incubated with different concentrations of chitin resin are not obvious. *E. coli* transformed with KAX5A (negative control) and TAAK-a54 plasmids are incubated with chitin resin (n=3) at 4 C for 15 hours. OD₆₀₀ was recorded before and after the incubation. Statistical significance relative to KAX5A control and chitin resin-empty control were assessed by two-way ANOVA with multiple comparisons. ns: not significant; *P \leq 0.0332; **P \leq 0.0021; ***P \leq 0.0002; ****P \leq 0.0001. This experiment was the replica of the experiment with results presented in the paper, just with different concentrations of chitin resin and in triplicates. No significant OD₆₀₀ change is observed as cell cultures are incubated with more chitin resin. Hence, results from the previous experiment were presented as the main figure.

KAX5A

TAAK-A54

FIG. S5 TAAK-A54 cultures without chitin resin were less turbid and had a larger cleared portion on the top of the culture than KAX5A after a 15-hour incubation.