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SUMMARY  Prediabetes is the precursor condition to Type II diabetes (T2D), a chronic 
metabolic disorder characterized by insulin resistance and insufficient uptake of glucose from 
the bloodstream.  Current diagnostic methods glycosylated hemoglobin (HbA1c) and fasting 
plasma glucose (FPG) are the most widely used clinical tools yet can be inconsistent in 
determining prediabetic or T2D status. While current research highlights the association 
between gut microbiome composition and T2D, and to a lesser extent prediabetes, the 
difference between the microbiome composition of patients classified using HbA1c and FPG 
is currently unknown. To address this knowledge gap, we used 16S rRNA sequencing data 
collected from stool samples of a Colombian cohort, investigating the differences in the gut 
microbiome composition in patients classified using HbA1c compared to FPG. Although the 
alpha and beta diversity analysis revealed no significant differences on a community level, 
the core microbiome, differential abundance, and indicator taxa analyses displayed 
differences in gut microbial composition when comparing HbA1c and FPG prediabetic 
definitions with minimal overlap in identified taxa. Further, functional analysis suggested 
distinct metabolic profiles among HbA1c compared to FPG-classified prediabetes patients. 
Taken together, our study demonstrates that diagnosing prediabetes using the two diagnostic 
tools reveals distinct compositions of the gut microbiome, impacting both taxonomic and 
functional levels, underscoring the importance of employing multiple diagnostic tools in 
clinical practice to optimize prediabetes management. 
 
 
INTRODUCTION 

ype II diabetes (T2D) presents a growing public health challenge, impacting over 500 
million individuals globally (1) incurring up to $10,000 in annual out-of-pocket 

expenses. (2). Projections indicate that by 2050, worldwide cases will surpass one billion, 
positioning T2D among the top 10 leading causes of global mortality and disability (1). This 
chronic metabolic disorder is marked by insulin resistance, leading to persistently elevated 
blood sugar levels (2). Prediabetes is an insulin-related condition preceding T2D, where blood 
sugar levels are higher than normal but not high enough to be considered diabetes (3). It is 
estimated by the Centers for Disease Control that 80% of individuals with prediabetes are 
unaware of their health condition (3). Those with diabetes or prediabetes face heightened 
risks of severe medical complications such as cardiovascular and renal diseases (4).  

While the boundary between prediabetes and diabetes is somewhat subjective, clinicians 
generally define prediabetes based on either glycosylated hemoglobin levels (HbA1c) or 
fasting plasma glucose concentrations (FPG) (5). HbA1c refers to the percentage of 
hemoglobin in the bloodstream that is carrying a glucose molecule. It is a long-term 
diagnostic tool since it reports an individual’s average blood glucose over a 3-month period 
(5). FPG refers to the actual concentration of glucose in the bloodstream following an 8 to 
12-hour fast and is considered more of an acute diagnostic tool (5).  

Previous research has shown that a patient’s HbA1c and FPG often do not align, and that 
while each diagnostic method is viable for assessing high blood sugar to an extent, there are 
valid concerns surrounding their usage as diagnostic criteria for prediabetes (5). It is generally 
accepted that HbA1c at or above 5.7% is considered prediabetic trending towards diabetes 
(4). Likewise, per the World Health Organization, FPG at or above 6.1 mmol/L is considered 
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prediabetic towards diabetes (5). However, it has been reported by Ho-Pham et al., that 
HbA1c and FPG may be categorizing distinct groups of diabetic individuals given that notable 
differences exist in the classification of diabetes when comparing HbA1c and FPG 
measurements (6). Suggesting that these tools may identify distinct diabetic populations with 
varying microbial and physiological processes (6). With these discrepancies combined with 
the fact that both of these diagnostic tools are utilized in a clinical setting, we wanted to 
compare their predictive effectiveness by examining taxonomic and functional differences in 
the gut microbiome of prediabetic and healthy patients.  

Microbes of the gut and their metabolites can have a strong influence on the host 
metabolism and consequently T2D (7, 8). As such, numerous studies have highlighted the 
importance of a healthy gut microbiota in managing and protecting against insulin resistance 
in the context of prediabetes and T2D (9, 10). Previous studies have established a significant 
association between the gut microbiome composition and the development and progression 
of T2D. A comprehensive review by Gurung et al. found the genera Ruminococcus, 
Fusobacterium, and Blautia were consistently increased in T2D populations while the genera, 
Roseburia, Faecalibacterium, Bifidobacterium, Bacteroides, and Akkermansia were 
decreased (11). Other studies describe a decrease in taxa involved in the production of 
butyrate, an important short-chain fatty acid (SCFA), which is involved in reducing 
inflammatory responses, and maintaining the integrity of the intestinal barrier (12, 13). 
Furthermore, T2D-specific taxa was observed in certain tissue in T2D individuals with severe 
obesity (14). Depleted Gram-positive bacteria and an increased abundance of opportunistic 
Gram-negative Enterobacteriaceae was found in adipose tissue (14). These studies highlight 
the potential pathogenic effects of certain taxa or microbiome alterations on the metabolic 
health of the host.  

In contrast, certain bacterial taxa have been described to be protective against T2D 
including Lactobacillus fermentum, plantarum and casei, Roseburia intestinalis, 
Akkermansia muciniphila and Bacteroides fragilis which are all associated with improved 
glucose metabolism, insulin sensitivity and anti-inflammatory activity (15). Bifidobacterium 
and Bacteroides are the most consistently reported in the literature as potentially protective 
against T2D (11). Genera such as Lactobacillus can be challenging to analyze as the 
association with T2D is taxa-specific and studies have reported inconsistent findings (11). 
This can be partly explained by the use of medications as some diabetes drugs such as 
metformin have been described to alter the gut microbial composition (16). Overall, these 
studies highlight the complexity of the gut microbiome and its association with T2D while 
also presenting the potential for microbial-based T2D therapeutics. 

Considering this background and knowledge regarding diagnostic tools and the gut 
microbiome in T2D, we sought to investigate how patients classified with prediabetes using 
HbA1c or FPG testing might differ in the context of their gut microbiome composition. No 
previous studies have been conducted to research this link, highlighting a prominent 
knowledge gap in the field of T2D and microbiome research. In this study, we investigated 
the differences in the gut microbiome composition of patients categorized using HbA1c 
compared to FPG. Given the inconsistencies between HbA1c and FPG tests to characterize 
T2D and prediabetes, we expect to observe a difference in the microbial composition as 
described by our diversity and taxa analyses, of prediabetic and T2D patients classified using 
either diagnostic tool. 
 
METHODS AND MATERIALS 

Dataset acquisition. The dataset used in this investigation was taken from a publication in 
Scientific Report by researchers de la Cuesta-Zuluaga et al., titled, “Gut microbiota is 
associated with obesity and cardiometabolic disease in a population in the midst of 
Westernization” (17). Their study sought to investigate the gut microbiome composition of 
Colombian adults whose diets are undergoing westernization (17). Individuals that were 
sampled were located in a variety of Colombian cities, notably, Bogotá, Medellin, Cali, 
Barranquilla and Bucaramanga (17). The dataset consists of 441 Colombian adult stool 
samples (17). Within their accessible dataset, 16S rRNA sequencing data from the gut and 
T2D-related metadata were available (17). Microbial sequences were obtained using the 515F 
and 806R primers to isolate the V4 region of the 16S rRNA gene. 
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Metadata filtering and grouping. To investigate the differences between HbA1c and FPG 
diagnostic tools in relation to gut microbiome composition among a Colombian cohort, a 
metadata file was formatted and filtered in R (version 2023.12.1+402) (18) using the tidyverse 
package (19). Beginning with filtering, primary metadata categories HbA1c and FPG were 
retained, along with secondary variables including Body-Mass Index (BMI), High-Density 
Lipoprotein (HDL), Cholesterol, C-Reactive Protein (CRP), and Triglycerides as these have 
all been shown to be markers associated with T2D (20). Following filtering, two new 
metadata categories were generated to represent a prediabetes diagnosis using HbA1c 
(HbA1c_Prediabetic) or FPG (FPG_Prediabetic). The prediabetes thresholds for diagnosis 
were based on the industry standards: an HbA1c value of 5.7% or greater (4) and an FPG 
value of 6.1 mmol/L or greater was deemed prediabetic (5). Each metadata category was 
represented as a new column in the metadata file, with each sample receiving either “yes” if 
they met or surpassed the prediabetes threshold for either diagnostic marker or a “no” if they 
fell short of the set threshold. Metadata filtering and formatting had no impact on total study 
sample size as all 441 samples were retained. As noted in Table 1, 135 individuals were 
classified prediabetic using HbA1C, and 21 individuals were classified using FPG.  
 
TABLE 1. Classifying prediabetes using HbA1C and FPG to define 
experimental cohorts. Individuals were classified as prediabetic using either 
HbA1c or FPG thresholds. An HbA1c value of 5.7% or greater and an FPG value of 
6.1 mmol/L or greater was deemed prediabetic. A total of 441 participants were 
divided into either a Prediabetic or Healthy cohort in both the HbA1c and FPG 
condition.  

Disease State HbA1c Sample Sizes FPG Sample Sizes 

Prediabetic 135 21 

Healthy 306 420 

 
Data processing using the QIIME 2 pipeline. The sequence data was processed using the 
Quantitative Insights into Microbial Ecology version 2 (QIIME 2) (21) and details can be 
found in the supplemental QIIME 2 script. The raw single-ended sequence data was imported 
using a manifest file and demultiplexed using QIIME 2 (version 2023.7). Sequence quality 
control was performed using the Divisive Amplicon Denoising Algorithm 2 (DADA2) (22). 
Amplicon sequence variants (ASVs) were determined using a truncation length of 230 base 
pairs, which maintained a medium Phred quality score of 37. Subsequently, a feature table 
was generated, and mitochondrial and chloroplast sequences were filtered out to produce a 
filtered table. The ASVs were taxonomically classified using a Naive Bayes classifier (trained 
on truncated full-length sequences of 230 base pairs) (23) derived from the SILVA 138 99% 
database, specifically for the V4 region of the 16S rRNA gene (24). Amplification was 
performed using the 515F primer (GTGCCAGCMGCCGCGGTAA) and the 806R primer 
(GGACTACHVGGGTWTCTAAT). A rooted phylogenetic tree was constructed by aligning 
ASVs using Multiple Alignment Fast Fourier Transform (MAFFT) and FastTree (25, 26). 
The filtered feature table, taxonomy table, and rooted phylogenetic tree were exported from 
QIIME 2 to R for further analysis. 
 
Alpha and beta diversity analysis using QIIME 2. To determine the community diversity 
between the prediabetic and non-prediabetic populations in both the HbA1c and FPG-
classified cohorts, core alpha and beta metrics were generated using QIIME 2 (21). The 
samples were alpha-rarefied at a sampling depth of 26,493 to retain 8,689,704 (53.68%) 
features in 328 (74.38%) samples. The core metric files were generated using the QIIME 2 
core phylogenetic diversity metrics tool (27). Files were exported to a local computer and 
visualized using QIIME 2 View and further analyses were performed on RStudio for plots of 
interest (28).   
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Alpha and beta diversity metrics and statistical analysis in RStudio. The QIIME 2 output 
files including the feature table, metadata, taxonomy, and phylogenetic tree were imported 
into RStudio (18). A phyloseq object was created using these files and the phyloseq package 
(29). Samples were filtered to remove non-bacterial sequences and exclude ASVs with less 
than 5 reads and samples with fewer than 100 reads. Alpha diversity was analyzed using 
Observed, Chao1 and Shannon indexes and pairwise Kruskal-Wallis tests were used to 
determine statistical significance using the phyloseq package (29). Bray-Curtis and weighted 
UniFrac indexes were used to assess beta diversity and the PERMANOVA (permutational 
multivariate ANOVA) test was used to determine statistical significance using the vegan 
package (30). The ggplot2 package was used to visualize the community diversity through 
box plots and Principal Coordinate Analysis (PCoA) plots (31).  
 
Core microbiome analysis. Core microbiome analysis was performed in RStudio using the 
microbiome package (version 1.23.1) (32). Details can be found in the supplemental R script. 
Phyloseq object was created using the phyloseq package (version 1.46.0) (33).  The detection 
thresholds were set to 0.0 and prevalence thresholds were set to 0.3 (34). A Venn diagram 
was created using ggVennDiagram (version 1.5.2) (35) to visualize shared and unique taxa 
between healthy and prediabetic cohorts using either the HbA1c or FPG diagnostic tools.  
 
Differential abundance analysis. To identify the differences in the abundance of each taxa 
between both HbA1c and FPG prediabetic and healthy samples, differential abundance 
analysis (DAA) using the DESeq2 (36) package was conducted. First, the existing phyloseq 
object was transformed to remove the zeros and then converted to DESeq objects specific to 
HbA1c or FPG Prediabetic. The DESeq function was used to run the analysis using the 
healthy samples as references. The analysis output was graphed on a volcano plot showing 
the taxa that increased or decreased in abundance in the prediabetic samples compared to the 
healthy samples, highlighting those that were statistically significantly abundant (P≤0.05).  
 
Indicator taxa analysis. To determine if there were species that were more prevalent and/or 
abundant in HbA1c and FPG prediabetic and healthy samples, indicator taxa analysis was run 
using the existing phyloseq object and the phyloseq (33) and indicspecies (37) packages in R. 
First, the phyloseq object was filtered as described in the alpha and beta analysis. The filtered 
phyloseq table was then converted to relative abundance. The multipatt function was used to 
cluster samples into HbA1c prediabetic and FPG prediabetic groups. A full list of indicator 
species classified down to the genus level for each prediabetic diagnosis definition group was 
generated using the summary command. Those identified as significant (P≤0.05) indicator 
taxa were formatted into a table.  
 
PICRUSt2 analysis. The PICRUSt2 (Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States 2) plugin tool in QIIME 2 was employed to predict the 
gut-microbiome-associated functional pathways (38). First, the SEPP tool in PICRUSt2 
placed ASVs from 16S rRNA sequences onto a phylogenetic tree using reference phylogeny 
(38). The PIC statistical tool then predicted the community’s functional potential by 
estimating the abundance of orthologous gene groups from the SEPP phylogenetic alignment 
(39). The resulting pathway abundance data was then imported into RStudio for further 
functional analysis using the ggpicrust2 package (40). Using a metadata file which subsets 
samples based on a prediabetes diagnosis (yes/no), a DAA of the pathway abundance data 
was conducted using the DESeq2 method to assess the statistical significance across 
prediabetic vs. healthy samples (41). Finally, MetaCyc pathways were annotated, and only 
statistically significant functional pathways were plotted on a Log2FoldChange bar graph. 
 
RESULTS 

Prediabetic status was not correlated with changes to the gut microbiome for 
patients categorized using HbA1c or FPG. To first establish a baseline for the microbial 
differences in patients with and without prediabetes, we conducted alpha and beta diversity 
analysis. As seen in Figures 1 and S1, the alpha diversity analyses conducted resulted in no 
significant differences in richness (Observed and Chao1) and abundance (Shannon) between 
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prediabetic and non-prediabetic patients in both HbA1c and FPG groups. Similarly, in Figure 
S2, beta diversity, Bray-Curtis and Weighted UniFrac indexes indicated no significant 
differences in abundance, richness, or phylogenetic distance between the two diagnostic 
measures. These findings suggest no differences in gut microbiota diversity on a community 
level in prediabetic and non-prediabetic patients in HbA1c and FPG-classified cohorts, 
leading us to investigate further by looking at individual taxonomic differences.  

 
 

Core microbiomes of prediabetic and healthy patients show taxonomic differences 
when categorized using the different diagnostic tools.  To determine which taxa were 
shared between healthy and prediabetic cohorts, as well as between the two diagnostic tools, 
HbA1c and FPG, a core microbiome analysis was conducted. The analysis determined that a 
large portion of the microbiome was shared between healthy and prediabetic patients when 
using either diagnostic tool (Figure 2). When comparing diagnostic tools, fewer ASVs were 
exclusive to the prediabetic cohort when using HbA1c, compared to using FPG to categorize. 
When analyzing ASVs common to these two exclusively prediabetic cohorts, there were only 
seven ASVs that overlapped when comparing diagnostic tools. This shows there are 
taxonomic differences within the core microbiome in prediabetic patients when FPG is used 
to classify prediabetes compared to HbA1c. 

 

FIG. 1 Prediabetic status was not 
correlated with changes to the gut 
microbiome for patients classified 
using HbA1c or FPG. Used the alpha 
diversity metric, Shannon, to compare 
the microbial richness of prediabetic 
and non-prediabetic patients based on 
(A) HbA1c-classified patients, P = 
0.083. (B) FPG-classified patients, P = 
0.350. Significance was determined 
with the Kruskal-Wallis test using a 
threshold of P≤0.05. n.s. indicates no 
significant difference. 
 
 

FIG. 2 Prediabetic patients exhibit taxonomic differences in core microbiome between when categorized using FPG 
compared to HbA1c. Core microbiome analysis was conducted on 441 individuals, 21 of which were classified as prediabetic 
using HbA1c and 135 of which were classified as prediabetic using FPG. Analysis was completed using a detection threshold of 
0.0 and a prevalence threshold of 0.3. (A) 32 taxa exclusive to prediabetic microbiomes when using FPG to categorize. (B) 16 
taxa exclusive to prediabetic microbiomes when using HbA1c to categorize. (C) Summary of the provided Venn diagrams. 
Taxonomic overlap of 7 ASVs when comparing the exclusively prediabetic cohorts.  
 
 



UJEMI Bilal et al. 

September 2024   Volume 29: 1-15 Undergraduate Research Article • Not refereed https://jemi.microbiology.ubc.ca/ 6 

FPG prediabetic diagnostic tool resolves a greater difference in the abundance of 
taxa between prediabetic and healthy samples than HbA1c. A differential abundance 
analysis was conducted to compare the differences in the abundance of each taxon between 
prediabetic and healthy samples for both diagnostic definitions (Figure 3). An alpha 
significance value of P≤0.05 was used to identify significantly differentially abundant ASVs. 
When using the HbA1c prediabetic diagnosis, 4 ASVs had decreased in abundance in 
prediabetic compared to healthy samples (Figure 3A). However, for the FPG prediabetic 
diagnosis, 78 ASVs decreased in abundance (Figure 3B). Therefore, the FPG prediabetic 
definition reveals a greater difference in the abundance of taxa in prediabetic compared to 
healthy samples as HbA1c. Furthermore, only 1 ASV, classified from the Genus Clostridia 
UCG-014, was found to be common among the significantly decreased taxa from both 
diagnosis definitions, emphasizing their distinct characteristics. Although both definitions are 
used to diagnose prediabetic patients, gut microbial abundance differences were seen when 
looking at patients who are prediabetic based on one definition compared to the other.  

 

There are distinct indicator genera between HbA1c and FPG-classified prediabetic 
patients. Table 2 displays the statistically significant (P≤0.05) indicator ASVs classified by 
their phylum, family, and genus for HbA1c prediabetic (n=9), FPG prediabetic (n=7) and 
healthy samples (n=1). Comparing the indicator taxa among the prediabetic groups, no ASVs 
overlapped with each other. However, looking at the classification of the taxa, the phyla 
Bacteroidota, Proteobacteria and Firmicutes and the family Lachnospiraceae are seen in both 
definitions indicating potential commonalities in the prediabetic microbial gut composition 
at broader taxonomic levels. Narrowing down to the genus level, no overlap can be seen in 
the HbA1c and FPG prediabetic indicator taxa. This suggests that while there may be shared 
taxonomic phyla (Bacteroidota, Proteobacteria and Firmicutes), the specific genera within 
these groups differ between the two definitions of prediabetes. This could indicate subtle 
differences in the microbiome composition associated with two different prediabetic 

FIG. 3 FPG and HbA1c prediabetic classifications identified differences in the number of decreased 
abundance taxa in prediabetic vs. healthy samples. Differential abundance analysis compared taxonomic 
abundances between (A) HbA1c prediabetic and (B) FPG prediabetic to healthy samples. The x-axis indicates 
the Log2FoldChange of ASV abundance measures in prediabetic compared to healthy samples with the greater 
fold-change indicating either an increase in abundance (positive) or a decrease in abundance (negative). The 
y-axis is the -log10 of the adjusted P value, indicating whether the differential abundance was significant (P≤ 
0.05). Darker blue and purple points represent the HbA1c and FPG significantly differentially abundant taxa 
(TRUE) respectively. In HbA1c prediabetic samples, 4 taxa significantly decreased compared to healthy, while 
in FPG prediabetic samples, 78 taxa significantly decreased compared to healthy. 
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definitions, FPG and HbA1c.  Therefore, depending on the prediabetic definition, the specific 
microbial variants identified may vary.  
 
TABLE 2.  HbA1c and FPG prediabetic classification revealed unique indicator taxa for prediabetic and 
healthy samples, with no genera overlap. Indicator taxa analysis was conducted for HbA1c prediabetic, FPG 
prediabetic and healthy samples. Indicator taxa with P values below the set threshold of P ≤ 0.05 are shown alongside 
their classified phyla, family and genera. Indicator value scores ASVs based on their abundance and prevalence in a 
particular group to assign association with higher indicator values representing high abundance and prevalence.  

Phylum Family  Genus Indicator 
Value 

P-Value 

HbA1c Prediabetic 
Bacteroidota Prevotellaceae Prevotellaceae UCG-003 0.271 0.03 
Bacteroidota Barnesiellaceae Coprobacter 0.295 0.035 

Actinobacteriota Actinomycetaceae F0332 0.331 0.005 
Elusimicrobiota Elusimicrobiaceae Elusimicrobium 0.292 0.025 
Proteobacteria Acetobacteraceae Roseomonas 0.168 0.025 
Proteobacteria Moraxellaceae Acinetobacter 0.259 0.02 

Firmicutes Lachnospiraceae Syntrophococcus 0.264 0.005 
Proteobacteria Aeromonadaceae Aeromonas 0.142 0.045 
Proteobacteria Yersiniaceae NA 0.255 0.03 

FPG Prediabetic 
Firmicutes Caldicoprobacteraceae Caldicoprobacter 0.217 0.045 
Firmicutes Erysipelotrichaceae NA 0.571 0.005 

Bacteroidota Marinifilaceae Sanguibacteroides 0.467 0.01 
Proteobacteria Rhizobiaceae Phyllobacterium 0.296 0.01 
Synergistota Synergistaceae Cloacibacillus 0.592 0.015 
Firmicutes Peptostreptococcaceae Paeniclostridium 0.372 0.01 
Firmicutes Lachnospiraceae Bacteroides pectinophilus 0.323 0.01 

Healthy 
Proteobacteria Oxalobacteraceae Oxalobacter 0.258 0.03 

 
Prediabetes patients characterized using the HbA1c diagnostic tool have more 

dysregulated microbial metabolic pathways than patients categorized with the FPG tool.  
Functional pathways of gut microbiomes of individuals categorized as prediabetic by either 
the HbA1c or FPG diagnostic tool were analyzed using PiCRUSt2 ASV alignment. Using 
SEPP and PIC tools, 16S rRNA amplicon sequencing data was aligned with reference 
phylogeny, and analyzed for abundance, respectively. MetaCyc pathway predictions were 
conducted, identifying five pathways that were upregulated and five that were downregulated 
when using FPG as the diagnostic tool (Figure 4A and 4C). Conversely, when using HbA1c 
to classify, there were 36 upregulated pathways and 22 downregulated ones (Figure 4B and 
4C). Notably, HbA1c characterized patients display more microbial pathway alterations than 
the FPG cohort, demonstrating that patients classified using these tools further differ on a 
functional level in the context of the microbiome.  Further, there were only two dysregulated 
pathways in common between the HbA1c and FPG diagnostic tools. Notably, formaldehyde 
assimilation I, which is a serine pathway, was upregulated in both the prediabetic cohort 
classified using FPG as well as HbA1c (Figure 4A and 4B). Another pathway, taxadiene 
biosynthesis is downregulated in both of these conditions (Figure 4A and 4B). This data 
reveals distinct pathway alterations in prediabetic patients when using different diagnostic 
criteria as shown by minimal overlap in pathway alterations and a drastic number of 
functional changes shown in HbA1c-categorized individuals compared to FPG-categorized 
individuals.  
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DISCUSSION 

This study aimed to explore the differences in the gut microbiome composition among a 
Colombian cohort classified as prediabetic using HbA1c as compared to FPG, utilizing data 
collected by de la Cuesta-Zuluaga et al. (17).  

Firstly, it was observed that there were no significant differences in community diversity 
between prediabetic and healthy individuals, irrespective of whether they were classified 
using HbA1c or FPG (Figure 1, Figure S1 and Figure S2). Specifically, no significant 
difference in Shannon diversity between prediabetic and healthy individuals was found 
(Figure 1A and 1B), which aligns with findings of previous research by Kitten et al., who also 
found no significant differences in Shannon diversity when comparing Mexican Americans 
with and without T2D (42). Additionally, the analysis of the Chao1 index and Observed 
Features showed no significant differences in alpha diversity between prediabetic and healthy 
individuals, regardless of the diagnostic tool used (Figure S1A and S1B). Similarly, Zhang et 
al. found no difference in Chao1 diversity between individuals with normal glucose tolerance 
and those who were prediabetic (43). Furthermore, beta diversity analysis using the Bray-
Curtis and weighted UniFrac indexes demonstrated no significant differences between the 
prediabetic and healthy groups classified with either HbA1c or FPG (Figure S2A and S2B), 
consistent with previous literature (44, 45). These findings suggest that prediabetes, as 
classified by either HbA1c or FPG, does not appear to have a significant impact on the overall 
diversity of the gut microbiota in the Colombian cohort.  

FIG. 4 HbA1c and FPG diagnostic tools yield distinct microbial pathway dysregulation in prediabetes patients. 
PiCRUSt2 analysis was conducted to predict functional pathway abundances in patients characterized using the FPG and 
HbA1c tools.   Pathways were deemed significant if they met a threshold of P≤0.05, and significantly upregulated and 
downregulated pathways were plotted as Log2FoldChange for (A) FGP-prediabetic samples and (B) HbA1c-prediabetes 
samples. (C) Summary of the altered functional pathways from FPG and HbA1c. 
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Despite observing no difference in the overall community gut microbiome diversity in 
prediabetic samples compared to healthy, other research has shown that individuals with T2D 
differ in specific gut microbial composition from non-diabetic ones and that the development 
of gut microbial dysbiosis could be a clinical manifestation of T2D (46). Therefore, to identify 
specific bacterial taxa associated with the two prediabetes definitions within our sample 
cohort, we conducted taxonomic analyses including the core microbiome, differential 
abundance, and indicator taxa analyses. Our core microbiome analysis revealed differences 
in the unique microbiome of prediabetic individuals when comparing the diagnostic tools. 
Seven ASVs were identified to be common among the prediabetic-only groups while 25 and 
9 ASVs remained unique to FPG and HbA1c prediabetic samples respectively (Figure 2). In 
addition, the results of the indicator analysis highlighted that bacteria belonging to the phyla 
Firmicutes, Bacteroidota and Proteobacteria had associations with prediabetes (Table 2) 
which was further supported by our differential abundance analysis. Here, we observed that 
although there were no overlapping ASVs, bacteria of the same phyla, as in the indicator 
analysis, had significantly decreased in abundance compared to the healthy controls when 
using both HbA1c and FPG prediabetic definitions. These findings suggest that while overall 
gut microbiome diversity may not differ in prediabetic individuals compared to healthy 
controls, there are specific microbial taxa and patterns associated with prediabetes, which 
may vary depending on the diagnostic criteria used. This contributes to the understanding of 
the complex relationship between the gut microbiome and prediabetes. 

Moreover, the common ASV between the decreased abundance ASVs in both definitions 
was classified as the class Clostridia UCG-014 from the Firmicutes phylum. Findings from 
other researchers support this as Larsen et al. indicated that the proportions of phylum 
Firmicutes and class Clostridia were significantly reduced in the diabetic group compared to 
the control group (47). However, other studies, like Sedighi et al., contradict this and 
showcase an increasing abundance of Firmicute bacteria with diabetes (48). Both studies 
utilized different cohorts from different countries with varying factors that can affect the 
specific gut microbial differences like diet, lifestyle, genetics, and the parameters used to 
define prediabetes. Thus, these findings underscore the complexity and variability in gut 
microbial composition associated with prediabetes.  

Studies have observed discrepancies in identifying prediabetic populations of the two 
diagnostic tools FPG and HbA1c. Ho-Pham et al. discussed a significant discordance in the 
diagnosis of diabetes between FPG and HbA1c measurements from blood samples of 
participants in Vietnam suggesting they may identify two separate prediabetic populations 
with varying microbial and physiological processes (6). Additionally, White et al. described 
the differences of both measures in the sensitivity to diagnose prediabetes across different 
cohorts with FPG appearing to underestimate the burden of undiagnosed diabetes. (49). This 
can be seen in the prediabetic sample sizes from the classification of our cohort. The FPG 
definition identified 21 prediabetic samples and HbA1c identified 135 samples. The 
discrepancy of the two definitions in identifying prediabetic samples and furthermore their 
unique core microbiome, indicator and differentially abundant taxa revealed from our 
analyses may be explained by the different physiological processes that the two definitions 
use to define prediabetes (6). FPG measures blood glucose at a point in time after no 
consumption of sugar, helping to identify a problem with the patient’s sugar metabolism, 
leading to diabetes, and can be impacted by acute illnesses and stress (50). Whereas HbA1c 
looks at blood glucose levels over a longer period (2-3 months) and senses long-term signs 
of diabetes like obesity, heart conditions, high cholesterol, etc (50). Therefore, someone who 
is diagnosed as prediabetic using HbA1c may be unique physiologically and thus microbially 
to someone diagnosed with FPG. This highlights the importance of considering multiple 
diagnostic criteria and individualizing diagnostic approaches based on clinical judgment and 
risk factors. Further investigations into how those processes affect the gut microbiome are 
needed to fully understand the mechanisms.   

Interestingly, we observed that a single ASV was found to be shared between the core 
microbiome and indicator taxa of FPG-classified prediabetic individuals (Table 2, Figure 2). 
The organism was classified as being a part of the Erysipelotrichaceae family. 
Erysipelotrichaceae is a family of bacteria that has been largely implicated in metabolic 
disorders particularly obesity (51). However, there is a growing body of research that suggests 
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that this family may be important in the context of T2D. Lippert et al. explored the 
relationship between the gut microbiome and various glucose metabolism disorders and found 
that there was a greater abundance of the Erysipelotrichaceae family in individuals with 
impaired glucose tolerance including individuals with T2D as compared to healthy 
individuals who had normal glucose tolerance (52). The researchers also found that the 
Erysipelotrichaceae family was shared in the core microbiome of individuals with pre-
diabetes/diabetes, obesity, and metabolic syndrome (52). Similarly, in a study conducted by 
Graval et al. this family was found to have a significantly increased abundance in T2D vs 
healthy individuals (53). In contrast to these findings, in our study, we found that there was a 
non-significant decrease in the abundance of this family in pre-diabetic individuals as 
compared to healthy controls (Figure 3). Nevertheless, these inconsistencies may in part be 
explained by the relationship between microbes and T2D being species-specific (54). For 
instance, while the genus Lactobacillus as a whole has shown a positive association with T2D 
in some studies, it is important to note that individual species within the genus may have 
varying effects on health (54). Some species of Lactobacillus have been found to possess 
anti-inflammatory properties and may confer benefits to metabolic health (54). Therefore, the 
overall impact of Lactobacillus on T2D risk and metabolic health likely depends on the 
specific species present and their interactions with the host and other members of the gut 
microbiota (54). By extension, this variability in the effects of specific microbial taxa 
underscores the complexity of microbial associations with prediabetes and T2D. This may 
partially explain why we observed a decrease in the abundance of the Erysipelotrichaceae 
family in our study compared to other research, as taxonomic resolution to the genus and 
species level within this family is necessary to better understand its relationship with 
prediabetes and T2D. 

In order to further resolve the taxa, we identified to be predictive of prediabetes based on 
FPG to the genera or species level, we utilized the Basic Local Alignment Search Tool 
(BLAST) to analyze the nucleotide sequence corresponding to that ASV (55). We found 
strong alignment with an unknown species within the Anaerorhabdus genus with a maximum 
score to be 416, a query coverage of 100%, an extremely low E value and 100% identity. To 
our knowledge, there is no current research that has explored the relationship between the 
Anaerorhabdus genus and pre-diabetes and therefore future studies could further characterize 
this genus and investigate the mechanisms by which this genus may be involved in 
prediabetes.  

 Furthermore, while using FPG as a diagnostic tool revealed more taxonomic 
differences than using HbA1c, utilizing HbA1c highlighted more functional differences in 
comparisons between prediabetic and healthy individuals. When FPG was used as a 
diagnostic tool for prediabetes, five pathways were found to be upregulated and five were 
downregulated (Figure 4A and 4C). Meanwhile, 36 upregulated pathways and 22 
downregulated ones were found when HbA1c was used as a diagnostic tool (Figure 4B and 
4C). This comparison indicates that when FPG is used, a smaller number of pathways are 
affected, while when HbA1c is used, a larger number of pathways are affected. This suggests 
that HbA1c might capture a broader spectrum of alternations in biological processes 
associated with prediabetes, as reflected in the microbiome. Perhaps this can be attributed to 
the fact that HbA1c reflects average blood glucose levels over three months as compared to 
FPG which provides a snapshot of glucose levels at a specific point in time (5). The longer-
term perspective captured by HbA1c may allow for the detection of more subtle and sustained 
changes in metabolic processes, leading to a broader range of affected pathways. 

Moreover, there was minimal overlap between the pathways that were altered in 
prediabetic as compared to healthy individuals when comparing between the two diagnostic 
tools. Specifically, only two altered pathways were common among the diagnostic tools, 
namely formaldehyde assimilation I was found to be upregulated in prediabetic patients and 
taxadiene biosynthesis was downregulated (Figure 4A and 4B). Formaldehyde assimilation I 
is a metabolic pathway responsible for converting formaldehyde into other compounds. 
Hipkiss et al. found that individuals with T2D have an increased production of formaldehyde, 
a reactive and potentially toxic compound that can induce cellular stress and damage (56). 
The upregulation of formaldehyde assimilation I that has been observed in prediabetic 
individuals may indicate a response to increased formaldehyde levels in related metabolic 
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pathways and serve as a way to prevent its accumulation. Conversely, the downregulation of 
taxadiene biosynthesis may reflect a prioritization of metabolic pathways, reallocating 
resources away from non-essential processes like secondary metabolite production, such as 
taxadiene biosynthesis, towards pathways crucial for managing the stress response provoked 
by prediabetes and T2D (57). The remaining pathways that were upregulated and 
downregulated when HbA1c was used as a diagnostic tool did not overlap with those that 
were altered in FPG-classified individuals (Figure 4C). Consequently, this highlights the 
potential of different diagnostic markers to reveal distinct aspects of prediabetes-related 
physiological changes in the microbiome.  

Although both HbA1c and FPG serve as diagnostic markers for prediabetes in clinical 
practice, our research indicates that they influence taxonomic and functional changes within 
the microbiota in distinct ways. The FPG prediabetic diagnostic tool revealed more 
pronounced differences in taxa abundance between prediabetic and healthy samples 
compared to HbA1c. Conversely, patients characterized with HbA1c exhibited more 
dysregulated microbial metabolic pathways than those classified with FPG. These distinct 
microbial signatures associated with different diagnostic criteria underscore the need for 
tailored approaches in understanding the gut microbiome’s role in metabolic disorders. 
Relying solely on one diagnostic marker may not offer a comprehensive understanding of the 
complex interplay between prediabetes and the microbiome. Our findings highlight the 
importance of considering a combination of diagnostic markers to more accurately assess an 
individual’s prediabetic status and associated health risks. HbA1c reflects long-term glycemic 
control (5), providing insights into chronic metabolic dysregulation, while FPG offers 
immediate glucose levels (5) that can impact microbial dynamics in the short term. 
Combining these markers may allow clinicians to assess both the chronic and acute metabolic 
influences on the microbiota, providing a more holistic view of prediabetes-related changes. 
By incorporating multiple diagnostic markers, clinicians can gain a more comprehensive 
understanding of an individual’s prediabetic status, stratify individuals based on their health 
risks, and develop personalized treatment approaches that address the specific metabolic and 
microbial imbalances present in each individual with prediabetes. 

 
Limitations Along with our preliminary findings regarding the differences in the diabetic 
diagnostic measures and the gut microbiome composition in T2D patients, it is important to 
consider the limitations of this study. Firstly, the dataset provided by de la Cuesta-Zuluaga et 
al. is not well characterized for a diabetes cohort (17). The sample size of prediabetic patients 
was limited as many patients did not have diabetes as indicated by their HbA1c and FPG 
levels. To expand our sample size of prediabetic patients, we pooled in diabetic patients which 
limits our ability to differentiate between microbial differences in patients experiencing 
insulin resistance and those with well-established T2D. Moreover, patients were not clinically 
diagnosed during sample collection and therefore, using clinical parameters, we classified 
patients as prediabetic and diabetic using their HbA1c and FPG values. This may have 
resulted in inaccurate grouping of patients as T2D diagnosis requires a clinician and often 
takes into account medical history, symptoms, more than one test or tests taken at multiple 
time points (58). 

Additionally, there may have been confounding variables in our data set that we did not 
control for including sex, age, genetics, use of medications (e.g. antibiotics, probiotics), mode 
of delivery, infant feeding, and other chronic conditions which have all been described to 
impact the microbial composition (59, 60). Particularly relevant to our study is the use of 
diabetes drugs as Lee et al. describe their ability to alter the gut microbiome composition (16) 
highlighting its potential impact in our analysis as a confounder. Although it is unlikely to 
control for all the variables that can influence the gut microbiome, our study is limited by its 
inability to fully account for these confounding factors, which may introduce bias and affect 
the validity and generalizability of our findings. 

Lastly, our dataset is collected from a unique population in Colombia that is undergoing 
Westernization as defined by de la Cuesta-Zuluaga et al. (17). This limits its generalizability 
to populations that consume an inherently Westernized diet such as Canada and the United 
States or conversely, those who have not undergone Westernization. Regional differences and 
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individual diets play significant roles in the microbiome composition that should always be 
taken into consideration when considering gut microbial diversity (61).  
 
Conclusions Our study investigated whether diagnosing prediabetes using HbA1c versus 
FPG reveals differences in gut microbiome composition within a Colombian cohort. 
Interestingly, we observed no significant differences in microbial diversity between 
prediabetic and healthy individuals, regardless of which diagnostic marker was considered. 
However, notable disparities in taxonomic composition emerged when comparing both 
diagnostic tools. While some ASVs were shared among prediabetic individuals categorized 
by both HbA1c and FPG, several were unique to each diagnostic group. Moreover, indicator 
taxa associated with prediabetes showed no genera overlap between the two diagnostic 
criteria which may imply the presence of two distinct microbial profiles associated with each 
diagnostic tool. Additionally, our investigation revealed distinct patterns in microbial taxa 
and functional pathways between FPG- and HbA1c-categorized individuals. Specifically, 
FPG-categorized individuals exhibited a higher number of taxa showing both upregulation 
and downregulation in prediabetic individuals compared to healthy individuals. In contrast, 
HbA1c-categorized individuals demonstrated more alterations in functional pathways than 
those with FPG. Our work demonstrates that diagnosing prediabetes using HbA1c and FPG 
reveals differences in the composition of the gut microbiome on a taxonomic and functional 
level, thus supporting our hypothesis. This present work emphasizes the need for using 
multiple diagnostic tools in a clinical setting to enhance the efficacy of prediabetes 
management. 
 
Future Directions This study offers a potential discrepancy between taxonomic diversity 
when individuals are diagnosed as prediabetic using different diagnostic tools. To further 
validate HbA1c and FPG as diagnostic tools for T2D in relation to the gut microbiome, a 
similar study could be conducted with a larger and well-defined dataset. Larger sample sizes 
would increase confidence in observed results and using a well-defined dataset would prevent 
researchers from having to define the threshold of prediabetes based on previous literature. 
This could further elucidate whether patients diagnosed as prediabetic using different 
diagnostic tools display differences in taxonomic gut microbiome diversity.  

Additionally, since this investigation was carried out in a Colombian cohort, future 
studies could expand the cultural and geographical diversity of the individuals from which 
samples are collected. This would permit research findings to be more applicable for 
extrapolation to the general public.  

Furthermore, in our study, we observed the relationship between diagnostic tools and the 
gut microbiome at a single point in time, but future research could expand this investigation 
into a longitudinal study. Determining how the gut microbiome and taxonomic diversity 
change over time in cohorts classified using different diagnostic tools could lead to interesting 
and novel connections between the gut microbiome and T2D.  

Finally, several notable taxa were identified during the indicator species investigation. It 
may be worthwhile for future studies to explore the connection between the 
Erysipelotrichaceae family and hyperglycemic conditions, given that there is existing 
literature highlighting potential connections to T2D.  
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