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SUMMARY   With the growing consumption of a high-fat Westernized diet in Latin America, 
a similarly Westernized microbiome is becoming predominant. Such a microbiome brings 
associations of dysbiosis and harmful metabolic products, as well as the risk of 
cardiometabolic disease – symptoms also associated with cigarette smokers. It is currently 
unclear whether the combination of a Westernized diet and cigarette smoking results in a 
compounded effect on the gut microbiome. In this study, we aim to investigate the synergistic 
effect of smoking with high blood levels of low-density lipoprotein (LDL) on the gut 
microbiota composition and function. Our analysis was performed to explore this potential 
interaction between two causes of health concern and their implications for microbiome-
influenced health. Using data from a 2018 microbiome study by de la Cuesta-Zulugala et al., 
our analyses show no significant changes in alpha diversity metrics between smoking & non-
smoking individuals and their blood LDL levels. However, at both a taxonomic and functional 
level smokers’ microbiota appear significantly more affected by blood LDL than those of 
non-smokers, which were comparatively stable. Changes of note include significant increases 
in hallmark taxa of Westernization (Bacteroides and Clostridia), as well as downregulation 
of pathways relating to degradation of both aromatic compounds and D-glucarate. We 
postulate that the former may be in response to polycyclic aromatic hydrocarbons found in 
cigarette smoke, while the latter is implicated in regulation of blood cholesterol levels, 
suggesting a more complex interplay between smoking and measured blood LDL. Together, 
our findings suggest that smokers experience a more volatile gut microbiome that can be 
mediated through informed dietary choices. 
 
 
INTRODUCTION 

he growing consumption of the “Westernized” diet – one high in saturated fats, refined 
sugars, animal proteins, and low in fresh produce (1)– in Latin America suggests a 
similarly Westernized gut microbiome is becoming predominant (2). Given the role that 

the gut microbiome plays across human health (3–5), this Westernization warrants concern 
as such a microbiome is associated with dysbiosis and harmful metabolic products (6).  

One marker of this dietary shift is increased blood low-density lipoprotein (LDL) levels. 
While low blood LDL is indicative of a healthy diet, a Westernized diet is characterized by 
overconsumption of saturated fats and thus elevated blood LDL, increasing risk of plaque 
buildup along blood vessels and cardiovascular disease (7, 8). The gut microbiota appears to 
regulate LDL levels through their influence on lipid metabolism (9), and in turn high-fat diets 
can influence microbial composition (10). Furthermore, these diets have been noted to induce 
shifts in gut microbiota composition that may contribute to metabolic inflammation (10). As 
a result, populations undergoing diet Westernization may face alterations in their gut 
microbiome placing them at risk for inflammatory and cardiovascular disease. 
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However, there are other non-dietary factors that also significantly contribute to gut 
microbiome dysbiosis and disease, including cigarette smoking (11, 12). Although a smaller 
proportion of the Colombian population smokes than that of the United States of America, 
almost twice as many Colombian youths (aged 13-15) consume cigarettes compared to their 
American counterparts (10,11). Tobacco smoke is associated with pathobiont colonization 
and biofilm formation in the gut (13), including increased abundance of Bacteroidetes, 
Clostridium, Bacteroides and Prevotella and loss of Firmicutes and Proteobacteria compared 
to never-smokers (14, 15). These taxonomic shifts, most notably the change in the 
Bacteroides/Firmicutes ratio, are associated with inflammatory bowel disease and 
predisposition towards metabolic disease state and obesity (16–18). The next generation’s 
health is put at risk by their consumption of harmful cigarette smoke, and by the consequences 
this causes to their microbiome. 

Given the role in gut dysbiosis demonstrated by both diet Westernization and smoking, 
we hypothesize there is a chance that the two exhibit a compounding effect on the 
microbiome, resulting in a greater dysbiosis than of either alone.  

 This is of concern given the health consequences with which both lifestyle choices are 
associated, including cardiovascular diseases, gastrointestinal inflammation, and obesity (16–
18). LDL levels are closely associated with cigarette smoking status, suggesting interplay 
between the two (19–21). Currently complex processes through which dietary LDL 
cholesterol interacts with gut microbiota and subsequently affects metabolic function among 
smokers remain a subject of ongoing research (10). One avenue for such studies requires large 
datasets capturing both the lifestyle and gut microbiome diversity of human populations, 
allowing comparison of microbiome composition and function across groups. 

To investigate the extent to which diet Westernization influences the gut microbiome, de 
la Cuesta-Zuluaga et al. took stool samples from 411 Colombian adults and characterized 
their microbiota (22). The Colombian diet was noted to be shifting away from traditional (rich 
in complex carbohydrates such as rice, potato and corn) to Westernized, processed foods. The 
authors identified Western-associated marker taxa such as Bacteroides, Bifidobacterium and 
Barnesiella alongside traditional-associated Prevotella and Treponema, suggesting that 
population’s microbiota – in reflection of their diet – was undergoing a shift from a traditional 
to Westernized state. The authors performed their analyses with a focus on the subsequent 
impact on cardiometabolic disease and obesity metrics, finding that the population’s semi-
Westernized microbiota suggested increased risk of both.  

Using the data produced by de la Cuesta-Zuluaga et al., we sought to elucidate whether 
smoking and high blood LDL combined exert a synergistic effect on gut microbiota 
composition and function. In this study we aim to identify the extent to which cigarette 
smoking affects Westernization-induced alterations of the gut microbiome, using blood low-
density lipoprotein (LDL) levels as a marker for the extent of Westernization. Our data 
suggest that smokers experience heightened LDL-associated alterations in the gut 
microbiome in contrast to non-smokers, underscoring the necessity for smokers to exercise 
caution regarding changes in an increasingly Westernized diet. 
 
METHODS AND MATERIALS 

Dataset and metadata. The dataset from de la Cuesta-Zuluaga et al. was generated by 
amplification and Illumina MiSeq sequencing of the 16S rRNA gene V4 hypervariable region 
of stool samples from 411 Colombian adults to characterize their gut microbiota (22). The 
study population included men and women ages 18-62 and excluded participants that took 
antibiotics or antiparasitics 3 months prior to enrolment, were underweight, pregnant, or 
diagnosed with neurodegenerative diseases, recent cancers, or gastrointestinal diseases. The 
study metadata included smoker status and blood serum LDL for each participant. The de la 
Cuesta-Zuluaga et al. study dataset is available at the SRA-NCBI under BioProject 
PRJNA417579. Scripts for further processing are available at Github: 
https://github.com/iporter-16/micb475-project2. and an overview of all processing and 
analyses is included below (Figure 1). 
 
Categorization of participants. For our investigation, we binned the LDL metadata category 
to describe each individual’s blood LDL level as “high” (>100 mg/dL) or “low” (≤100 
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mg/dL). The 100 mg/dL threshold was determined based on the medical standard for 
“healthy” blood LDL level in adults of <100 mg/dL (16). We subsequently binned the 
population into 4 categories (‘Smoking, high LDL’, ‘Smoking, low LDL’, ‘Non-smoking, 
high LDL’, ‘Non-smoking, low LDL’). 

 
Data processing using QIIME2 pipeline. We processed the 16S rRNA amplicon sequence 
data produced by de la Cuesta-Zuluaga et al. in Quantitative Insights Into Microbial Ecology 
2 (QIIME2, v2023.7.0) (23) and demultiplexed it using the q2-demux plugin. We performed 
denoising and clustering using the Divisive Amplicon Denoising Algorithm 2 (DADA2) (24) 
with the q2-dada plugin, with a truncation length of 248 selected following sequence quality 
analysis (Supp Figure S1A). We trained a feature classifier using the Silva 138 reference 
database, the F515 (5′-GTGCCAGCMGCCGCGGTAA-3′) and R806 (′-
GGACTACHVGGGTWTCTAAT-3′) primers, and truncation length of 248 (25, 26). We 
used this classifier to assign each sequence a taxonomic classification in QIIME2, and 
generated a rooted taxonomic tree using Multiple Alignment Fast Fourier Transform (27) via 
the q2-align-to-tree-mafft-fasttree plugin. The resulting amplicon sequencing variants 
(ASVs) were filtered to remove mitochondrial and chloroplast sequences. We generated an 
alpha rarefaction curve at a max sampling depth of 40000 and a sampling depth cutoff of 
22700, chosen to preserve 8,489,800 (54.66%) features in 374 (84.81%) samples for 
downstream analysis (Supp Figure S1B). The rooted tree, along with ASV feature table and 
taxonomy table, were exported to R for subsequent analyses. 
 
Alpha & beta diversity analysis. We created a phyloseq object using the rooted taxonomic 
tree, ASV feature table, taxonomy table, and binned metadata table using the phyloseq 
(v1.44.0) (28) and ape (v5.7-1) (29) packages. We performed alpha and beta diversity metrics 
on the phyloseq object using the phyloseq package, and visualized them using the following 
packages: tidyverse (v2.0.0), picante (v1.8.2), ggplot2 (v3.4.4), and vegan (v2.6-4) (30–33). 
We used one-way ANOVA tests to compare the overall Observed and Shannon’s Diversity 
metrics between the 4 categories, and visualized themas a bar plot. For beta diversity analysis, 
we used permutational ANOVA (PERMANOVA) tests with the following distance matrices: 
Weighted UniFrac, Unweighted UniFrac, Bray-Curtis, and Jaccard. We then visualized the 
beta diversity as a PCoA plot using the Weighted UniFrac distance matrix. 
 
Differential relative microbial abundance analysis. We analyzed differential relative 
microbial abundance in R, utilizing the generated phyloseq object (28). We incorporated a 
pseudocount of one into the counts before performing the differential relative microbial 
abundance analysis with DESeq2 (34). This addition serves to prevent undefined values and 
enhances the stability of variance estimation in the analysis. We assessed the statistical 

FIG. 1 Overview flowchart summarizing data analysis 
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significance of microbial taxa using the Wald test to compute adjusted p-values. We 
determined differentially abundant taxa based on a significance threshold set at an adjusted 
p-value of 0.01 and an effect threshold of an absolute log2 fold change greater than 2, 
employing the DESeq2 package (34). We visualized results in bar and volcano plots using 
ggplot2 (32). 
 
Metabolic pathway analysis using PICRUSt2. We installed phylogenetic Investigation of 
Communities by Reconstruction of Unobserved States Version 2.0 (PICRUSt2) (35) from 
source and ran it to generate the PICRUSt2 functional abundance output tables for pathway 
classification based on the MetaCyc database (36). For analyses in R, we imported the 
pathway abundance table and metadata, and filtered the data to isolate smokers and non-
smokers. We then performed metabolic pathway analysis was performed using the following 
packages: ggpicrust2 (v1.7.2), tidyverse (v2.0.0), ggprism (v1.0.4), patchwork (v1.1.3), 
DESeq2 (v1.42.0), and ggh4x (v0.2.6) (30, 34, 37–40). We performed pathway differential 
abundance analysis (DAA) on the LDL category group using the DESeq2 method for smokers 
and non-smokers, and annotated MetaCyC pathway results in each case. We visualized 
significant (p < 0.05) pathways from the metabolic pathway abundance results using pathway 
PCA plots and log2 fold change bar plots. 
 
RESULTS 

No significant changes in diversity were observed between dietary and smoking 
categories. To assess the overall impact of smoking and blood LDL level on gut microbiome 
diversity, we measured alpha and beta diversity for the four population categories (“Non-
smoking, high LDL”: n = 31, “Non-smoking, low LDL”: n = 295, “Smoking, high LDL”: n 
= 37, and “Smoking, low LDL”: n = 9). For alpha diversity measurements, both Observed 
features (Figure 2A) and Shannon’s Diversity Index (Figure 2B) showed no significant 
differences (One-Way ANOVA, p<0.05 cutoff) between the four categories suggesting no 
significant differences in community richness and abundance. Similarly, the beta diversity 
analyses measured using the Weighted UniFrac distance matrix and compared using 
PERMANOVA showed no significant difference between the groups. Upon PCoA analysis, 
samples did not display distinct clustering according to LDL category (Figure 3) further 
demonstrating that there was no significant difference in microbial composition. 

 
Distinct LDL-associated alterations in gut bacterial composition evident in smokers 

compared to non-smokers. Despite no difference found in diversity metrics, changes in 
taxonomic abundances are also indicative of gut microbiome alteration. As a result, we 
performed DESeq2 analysis to identify significantly altered taxa. We found17 ASVs were 
upregulated and 13 downregulated in smokers with high LDL relative to the smokers with  

FIG. 2 No significant effect on 
alpha diversity observed between 
different smoking and LDL 
populations. Alpha diversity 
measured using Observed Features 
(A) and Shannon’s Diversity Metric 
(B) shows no significant difference 
(ns) between four population 
categories, assessed using One-Way 
ANOVA with minimum p<0.05 
cutoff. 
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low LDL (Figure 4A). The most downregulated taxa included Prevotella, Muribaculaceae, 
and Lachnospiraceae, while the most upregulated included Howardella, Bacteroides, and 
Clostridia (Figure 4B). Conversely, in the non-smoking high LDL group only 2 ASVs within 
one genus (RF39) displayed significant changes as both upregulated and downregulated taxa 
compared to the non-smoking low LDL group (Supp Figure S3B). These findings suggest 
that smokers exhibit larger LDL-induced alterations in the gut microbiome composition than 
non-smokers. 

 

Smokers experience exacerbated LDL-associated alterations in gut metabolic 
pathways compared to non-smokers. As taxonomic changes may be associated with 
functional changes to the gut microbiota, we next investigated the changes in predicted 
metabolic pathways between smokers and non-smokers with varying blood LDL levels using 
PICRUSt2. Notably, we observed that smokers exhibited 13 upregulated pathways (log2 fold 
change >1) upon adopting a high blood LDL level (Figure 5). This is contrasted with only 
one pathway upregulated in non-smokers with high blood LDL levels. The upregulated 
pathways taken from smokers include the degradation of aromatic compounds, and of D-
glucarate and D-galactarate, while the singular pathway upregulated in the non-smokers 
cohort is the 3-phenylpropanoate and 3-(3-hydroxyphenyl) propanoate degradation pathway. 
These trends suggest smokers have a more volatile microbiome pertaining to gut function 
compared to that of non-smokers. 

 
 

FIG. 3 No significant effect on beta diversity observed between different smoking and LDL populations. PCoA plots 
of Weighted UniFrac distance to visualize beta diversity between smoking and LDL groups show no distinct clustering 
difference between high and low LDL blood levels of (A) smokers or (B) non-smokers. 
 
 

FIG. 4 Smokers experience exacerbated LDL-associated up and down regulation of gut bacteria relative to smokers with 
low LDL. (A) Comparing differential abundances of bacterial ASVs labelled at the genus level. Volcano plot blue dots: |Log2 
fold change|> 2 of smokers with high LDL vs. low LDL, p adj < 0.01. (B) Taxa bar plot. Differential expression of genera and 
corresponding log2 fold changes in smokers with high LDL compared to smokers with low LDL. p adj < 0.01 and |Log2 fold 
change| > 2. 
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DISCUSSION 

In this study, we aimed to unravel the complex interplay between smoking and dietary 
changes on the gut microbiome in a Colombian population undergoing Westernization. While 
prior literature has extensively characterized the isolated effects of smoking on gut microbial 
diversity (11, 12), the interactions between smoking and LDL levels amid the broader trend 
of Westernization remain poorly understood. Specifically, we investigated the associations 
between smoking status and blood LDL levels to find their implications in healthy gut 
microbial composition and metabolism. 

To investigate the gut microbial changes due to smoking status and blood LDL levels, we 
examined the alpha and beta diversity metrics between groups. Respectively, changes in 
community richness and dissimilarity between communities can be explained using these 
metrics. The LDL blood levels and smoking conditions do not demonstrate a significant effect 
on the alpha and beta diversity of the gut microbiome (Figure 2, 3). Some studies have shown 
similar observations in the non-significant effect on alpha diversity (41). However, there are 
also past studies showing that smokers have a significant change in alpha diversity (42) and 
a significant difference in UniFrac-based beta diversity compared to never-smokers (14), 
which is inconsistent with our observations. The inconsistency might stem from a lack of 
control over the cities where the Colombian population resides, considering that cities and 
their associated diet habits and environments exert a substantial additional influence on 
microbiome diversity (43, 44). The alpha diversity analyses showed large variation within 
categories, and the PCoA analyses included many outlying points, which supports the concern 
of extraneous and confounding variables affecting our conclusions. As a result, the diversity 
analyses could benefit from greater filtering and accounting for differences in metadata prior 
to concluding significance. Although the diversity metrics do not show a significant 
difference between LDL and smoking conditions, there is a different set of upregulation and 
downregulation in gut microbiome genera patterns between smokers and non-smokers 
(Figure 4B, Supp Figure S3B). 

Of the bacterial genera that significantly differed in smokers with high LDL, the genera 
Bacteroides, Clostridia, and Prevotella (Figure 4B) are strong markers of diet and lifestyle 
(45). We found that Bacteroides and Clostridia were upregulated in smokers with high LDL 

FIG. 5 Smokers experience exacerbated LDL-associated alterations in gut metabolic pathways compared to non-
smokers. Pathway differential abundance analysis via DESeq2 method. PICRUSt2-generated bar plot of high LDL-
associated metabolic pathway changes respective to the low LDL healthy reference. S = Smoking cohort, NS = Non-
smoking cohort. Filtered by |log2 Fold change| > 1; significance assessed with Wald test using p < 0.05. 
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which is consistent with previous studies that describe these genera as more common in 
Westernized diets (10, 46). The significant upregulation of Bacteroides and Clostridia may 
be attributed to the genus’ ability to tolerate bile acids which is common in the gut of increased 
meat intake seen in the Western diet (46) – repeating these studies with a focus on protein 
intake could be a promising next step. The metabolism and homeostasis of bile acids and 
cholesterol is integral to the prevention of the pathogenesis of cardiometabolic diseases such 
as atherosclerotic cardiovascular disease (47). With the upregulation of these bacteria in the 
gut, it is important to assess their health impacts overall. 

Bacteroides are typically commensal bacteria, but their overgrowth due to dietary habits 
can result in increased degradation of mucus, contributing to a pro-inflammatory state at the 
body site (48). Bacteroides can outcompete other bacteria and employ the most antibiotic 
resistance mechanisms, harboring concerns regarding their overgrowth and dysregulation 
(49). Additionally, biofilms produced by certain Bacteroides species may lead to cancer 
formation with their influence on increasing concentrations of reactive oxygen species (48). 
Our findings suggest that smokers have an exacerbated LDL-associated upregulation of 
Bacteroides (Figure 4A-B), necessitating the need for smokers to monitor their LDL intake 
more keenly. 

Our findings indicate that Clostridia bacteria were also upregulated similarly to 
Bacteroides within smoking, high blood LDL individuals (Figure 4A-B). In times of gut 
dysregulation, overgrowth of species like Clostridioides difficile may lead to severe infection, 
entailing functional gastrointestinal disorders (46). Species of Clostridia in the gut also 
contribute to human diseases such as gas gangrene, tetanus, botulism, pseudomembranous 
colitis, and food poisoning (50). This should further incentivize smokers with high LDL levels 
to be aware of the LDL content in their diet. 

On the other hand, the genus Prevotella was downregulated in the same population. 
According to the literature, Prevotella bacteria are significantly increased in tobacco smokers 
and former smokers (12, 51). In the context of diet Westernization, represented by our 
categorization of blood LDL levels, the genus tends to dominate a non-Westernized gut 
microbiome, but is decreased in Westernized populations which is in line with our findings 
(51). Further research finds that fat intake negatively correlates with Prevotella possibly 
because of its sensitivity to bile acids, which are upregulated in individuals who partake in 
high-fat diets (52). From this, we speculate that dietary fat intake has a greater influence on 
the regulation of Prevotella in the gut compared to smoking status. The Prevotella genus has 
been shown to be anti-inflammatory and protective against other bacteria by competing for 
fiber (46). However, various studies have also shown conflicting results on the role of 
Prevotella and dietary patterns on gut inflammation (53) and cardiometabolic health, 
including regulation of blood cholesterol and colitis susceptibility (51, 54). These conflicting 
results can be explained by inconsistencies in taxonomic designations and species boundaries, 
as well as strain-specific metabolic diversity (53). Again, we find that a high blood LDL level 
in combination with smoking shows markedly greater downregulation of Prevotella (Figure 
4A-B). Whether the downregulation of Prevotella in the gut microbiome is beneficial or not 
is unclear and further studies are needed to understand the conflicting results in previous 
studies and the current study. 

In terms of functional changes, most significantly upregulated pathways in smokers (with 
high LDL) are related to degradation of aromatic compounds (Figure 5). Regrettably, the 
literature has no extensive research linking the degradation of aromatic compounds in the gut 
to human health. However, we speculate that the upregulation of these pathways is directly 
implicated from smoking. For smokers, tobacco products contain polycyclic aromatic 
hydrocarbons (PAHs) that can be released during burning, and subsequently swallowed, 
which can then be a target for degradation (55). These compounds are known to be mutagenic, 
carcinogenic, and teratogenic (56). PAHs – serving as a distinct indicator of smoking status 
– along with elevated blood LDL levels, play a role in the mentioned pathway alterations. It 
may signify an upturn in the abundance of bacteria associated with the degradation of 
aromatic compounds. Indeed, this is expected of genera including Howardella (57), 
Clostridia (57), and Bacteroides (58) which we find significantly upregulated in the DESeq2 
analyses. Both Clostridia and Bacteroides are known to degrade PAHs (52, 53). PAHs are 
known to be lipid-soluble, to which we speculate that a Westernized diet may increase 
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gastrointestinal absorption (59). Additionally, it has been shown in murine models that 
increased exposure to benzo[a]pyrene, a PAH, induces compositional changes in gut diversity 
and abundances, and leads to increased penetrability and inflammation in the ileal segment 
mucosa (60). In contrast, the only pathway that exhibited a significant upregulation in the 
non-smoking, high LDL population was 3-phenylpropionate and 3-(3-hydroxyphenyl) 
propionate degradation (Figure 5). While these pathways are also categorized into the 
aromatic compound degradation cluster, the degradation of these compounds ultimately 
yields valuable nutrients like succinate, acetyl-CoA, and pyruvate for the gut lumen to absorb 
(61). 

Additionally, our functional analysis shows smokers with high blood LDL experience 
significant upregulation of D-glucarate and D-galactarate degradation pathways relative to 
those with low blood LDL (Figure 5). These pathways are associated with similarly 
upregulated genera including Clostridia and Bacteroides (62, 63). Interestingly, they have 
also been associated with Prevotella (61), which we found to be downregulated in the high 
LDL group. Cholesterol degradation is associated with D-glucarate (64), making it possible 
that the elevated blood LDL levels in these individuals may be a result of their altered 
microbiomes. This suggests that smoking fosters a microbiome inhibitory to the maintenance 
of healthy cholesterol levels, adding a layer of complexity to the interplay between the two 
variables. 

 
Limitations We acknowledge the existence of limitations in our study, which may influence 
our findings and interpretations. One of the major limitations is the unequal sample size 
between the categories of interest. For example, there are significantly more non-smokers 
(n=326) compared to smokers (n=46). Within the smoking population, only 9 individuals 
belong to the low LDL category, and 37 belong to the high LDL category, which may reduce 
the statistical power of the analysis. This makes it challenging to draw definitive conclusions 
and introduces type II error, in which the null hypothesis is not rejected when it is actually 
false. This limitation also constrained the exploration of other dietary categories. 

Another limitation of this study is that our computational analysis relied on a single 
dataset collected by de la Cuesta-Zuluaga et al., which comprised individuals residing in 
several of Colombia's major urban cities. As the genetic composition of the population – 
along with environmental conditions – can influence the microbiome diversity, these factors 
may be Colombia-specific (65, 66). Hence, trends observed in this study may not represent 
the global microbiome diversity. 

Finally, the presence of confounding variables within our dataset represents a significant 
limitation. The smoking status and blood LDL are the only factors explored in our study to 
study the changes in microbiome diversity, but other variables affecting the population – such 
as age and sex – could act as confounders (4, 67). In particular, it has been shown that the 
city lived in has a significant effect on the microbiome composition within this population 
(43), which we did not account for in our analyses. The unequal distribution of these variables 
among our study groups may lead to biased associations, making it challenging to isolate the 
specific impacts of smoking and LDL status on the gut microbiome. 
 
Conclusions Our research findings provide insights into how a Westernized diet and smoking 
habits influence overall gut microbiome diversity. Although alpha diversity analysis didn't 
show significant changes in species richness and abundance, and beta diversity analysis 
indicated no major differences in microbial composition across diversity levels, we observed 
specific alterations in upregulated pathways and differentially regulated bacterial species. Our 
investigation highlighted that smokers display an increased presence of Clostridia and 
Bacteroides, accompanied by an upregulation in the degradation of D-glucarate. The 
association between Bacteroides and D-glucarate breakdown, linked to cholesterol 
metabolism, suggests a potential reduction in cholesterol breakdown among smokers, 
potentially leading to higher LDL levels in the bloodstream. Additionally, smokers exhibited 
a decrease in Prevotella, known for their anti-inflammatory properties that contribute to 
overall host health. In conclusion, these findings caution smokers to remain vigilant about 
their LDL levels due to the observed volatile nature of the smoker's gut microbiota. This 
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emphasizes the importance of monitoring cholesterol levels among individuals who smoke, 
considering the identified microbiome alterations. 
 
Future Directions This study demonstrates that smoking and elevated blood LDL may act 
synergistically on the gut microbiome, resulting in exacerbated functional changes. A suitable 
next step would be further investigation into the participants’ metabolite profiles in order to 
validate these changes and confirm their health implications. In particular, the level of D-
glucarate and cholesterol can be sampled and investigated to confirm whether the 
upregulation in D-glucarate degradation genuinely influences blood LDL (64). 

These analyses would benefit from an expanded dataset including – and accounting for – 
broader geographic reach. This expansion would help mitigate the above-mentioned 
limitations of our current dataset, facilitating a more equitable distribution of participants 
across dietary categories and allowing a more nuanced classification of dietary habits. 
Initially our investigation extended to examine the potential impact of fiber intake on 
microbiome diversity (Supp Figure S2A-B). However, in contradiction to prior studies (68) 
these analyses failed to demonstrate statistical significance between smoking and fiber intake, 
potentially as a result of small sample size. Fiber and other dietary categories such as protein 
intake should be revisited with such an expanded dataset, as literature suggests their impact 
on the gut microbiome is akin to that of smoking and may thus be exacerbated by smoking 
status (46, 69, 70). 

In addition, our binary classification of LDL levels into high or low around a 100 mg/dL 
cutoff lacks a middle category, limiting the ability to capture nuances in lipid profiles. 
Excluding participants within a certain range around set dietary thresholds could provide a 
more detailed assessment. Introducing an intermediate category would furnish us with 
insights into the diversity changes among various LDL categories, not solely the extremes. 

Finally, potential confounding variables such as age, sex, and geographical location (i.e. 
city) can be identified. It has already been demonstrated that participants’ city of residence 
has a significant effect on their microbiome composition (43), as can an individual’s sex 
hormones (71). Future directions should involve identification and controlled analysis of 
these confounding factors – such as stratification by sex and location – to allow a more 
rounded interpretation of observed relationships. Recognizing and addressing these 
confounding factors would allow greater interpretations of the observed relationships in the 
context of the broader Westernization trends in the Colombian population. 
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