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SUMMARY   Parkinson’s disease is the fastest-growing neurodegenerative disease 
worldwide. Gut microbiome dysbiosis can precede the onset of Parkinson’s disease 
symptoms by 20 years. The ketogenic diet has shown beneficial impacts as an intervention in 
the treatment and modulation of the microbiome in Parkinson’s disease. While the ketogenic 
diet improves Parkinson’s disease symptoms, it increases the serum levels of saturated, 
monounsaturated, and polyunsaturated fatty acids. The current literature indicates conflicting 
results with the increase in intake and serum levels of fatty acids and the gut microbiome in 
Parkinson’s disease. We analyzed the data of 197 Parkinson’s disease patients and 103 
healthy controls to unveil associations between serum levels of saturated, mono-unsaturated, 
and polyunsaturated fatty acids and the microbiome. Our results indicate that saturated fatty 
acids have a weak but statistically significant positive relationship with the Shannon diversity 
of the gut microbiome in Parkinson’s disease subjects. Mono-unsaturated and poly-
unsaturated fatty acids were not significantly associated with the microbiome diversity. 
Additionally, we identified low saturated fatty acids associated with the Akkermansia, 
Bifidobacterium, Faecalibacterium, and Haemophilus genera, with implications in 
Parkinson’s disease progression and gut dysbiosis. Our analysis also shows low saturated 
fatty acid positively associates with metabolic pathways such as menaquinol and L-
methionine, both having been highlighted as beneficial for Parkinson’s disease. Together, our 
study indicates that low levels of serum saturated fatty acids are associated with specific genus 
and pathway changes known to have a positive effect on individuals with Parkinson’s 
disease.  
 
INTRODUCTION 

arkinson’s disease (PD) is a neurodegenerative condition characterized by resting 
tremors and bradykinesia, that has over last two decades risen rapidly in incidence and 
prevalence worldwide (1). Though PD progresses through dopaminergic (DA) neuronal 

degeneration, it presents with distinct gastrointestinal co-morbidities and altered bacterial 
abundance in the gut microbiota (2,3). Evidence has indicated that gut dysbiosis is correlated 
with PD onset and progression (4). However, the link between early disease processes in the 
gut and the following neural degeneration is not fully understood (1). Cristea et al. analyzed 
fecal samples from a cohort of 197 PD patients and 103 healthy controls, finding associations 
between the microbiome and PD with implications in gastrointestinal (GI) dysfunction, serum 
metabolites, and disease etiology (2). The study found significant taxonomic abundance 
differences between the cohorts, notably an increased Akkermansia and Bifidobacterium 
genera abundance and a decreased Faecalibacterium and Lachnospiraceae genera abundance 
in PD patients compared to the healthy control (2). 
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 While diet is a known pivotal factor in microbiome composition and diversity in humans, 
the value of the ketogenic diet (KD) which contains a high fat, moderate protein, and low 
carbohydrate macronutrient profile presents a dichotomy (5). KD has been shown to modulate 
the microbiota by decreasing the Bifidobacterium abundance in PD patients while clinical 
studies have demonstrated KD to help with the Movement Disorder Society-Sponsored 
Revision of the Unified Parkinson's disease Rating Scale (MDS-UPDRS) (5-8). However, 
KD’s utilization of a high fat intake (55-60% of total daily calories) raises serum levels of 
fatty acids including saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and 
polyunsaturated fatty acids (PUFA), the elevation of which has been shown to have mixed 
results for health (5,7-12).  

SFA, MUFA and PUFA each have unique and complex associations with PD, which can 
all influence disease prevention or progression in distinct ways. Higher SFA intake has been 
associated with an increased risk of PD with longitudinal studies reporting up to a 41% 
increased incidence of PD with higher SFA intake (9, 13). High serum SFA has also been 
associated with higher levels of lipopolysaccharides (LPS which are linked with inflammation 
(9). Despite this, SFA intake is also associated with increases in the abundance of 
Faecalibacterium (genus level) and Lachnospiraceae (family level), both members of the 
Firmicutes phylum, which are decreased in PD patients based on the data utilized by Cristea 
et al., indicating a potentially positive of higher SFA intake restoring a healthier microbiota 
composition in PD (2,9). Higher MUFA intake has been associated with a lower risk of PD, 
demonstrating a 0.68 adjusted hazard ratio for each standard deviation (SD) increase in intake 
(10). However, in vitro studies indicate oleic acids and other MUFA to be neurotoxic and 
elevating the levels of alpha-synuclein proteins (11). Studies exploring the serum levels of 
MUFA and associations in PD patients have yet to be explored in the literature. Higher PUFA 
intake is found to promote diversity and enhance neuronal growth (9). However, studies have 
also shown a significantly increased risk of PD onset with increased arachidonic acid 20:4 (a 
type of PUFA) intake (2). Other studies examining the effect of omega-3 (ω3) supplements, 
another type of PUFA, found it decreased Faecalibacterium, which correlates with the 
microbiota changes that precede PD (14,15). However, omega-3 has also been associated 
with improving brain health and reducing inflammation (16). Lower serum levels of alpha-
linolenic acid and linoleic acid were associated with more severe motor symptoms in PD 
patients, while higher levels of plasma docosahexaenoic acid and arachidonic acid were 
associated with more severe non-motor symptoms in PD (12).   

Overall, given this gap in the literature surrounding the specific associations of serum 
FAs and the gut microbiome for PD, our study aimed to build off the dataset generated by 
Cristea et al. to unveil associations between serum levels of SFA, MUFA, and PUFA and the 
microbiome diversity in PD patients (5-7,17).  
 
METHODS AND MATERIALS 

Dataset collection. The dataset used for this research came from Cirstea et al. which is 
comprised of 300 participants (197 with PD and 103 healthy controls) ranging from 40-80 
years old (2). The goal of the study was to determine how intestinal microbiota plays a role 
in gastrointestinal disturbances seen in PD patients (2). 16S rRNA sequencing was done on 
fecal samples collected from participants (2). Our research focused on the serum SFA, 
MUFA, and PUFA data provided by Cirstea et al. (2). 
 
16S rRNA sequence processing via QIIME2. Using QIIME2 (v2023.7), the 16S rRNA V4 
sequences provided by Cirstea et al. were imported and demultiplexed. Subsequently, 
Divisive Amplicon Denoising Algorithm 2 (DADA2) was used to denoise the sequences to 
attain the feature table of the Amplicon Sequence Variants (ASVs) (2,18,19). The trimming 
and truncation parameters were set to 8 and 251 respectively based on the quality scores. The 
silva-138-99-515-806-nb-classifier was used. The QIIME2 output was used for downstream 
analysis in R. 
 
Data filtering and rarefaction. R 4.3.1 was used to analyze the outputs generated from 
QIIME2. Using the tidyverse package, the outputs from QIIME2 were imported and modified 
for the conversion into a phyloseq object using the phyloseq, ape (v5.7.1), and vegan packages 
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(20-23). Before doing so, any ASVs belonging to the Archaea domain, chloroplast order, or 
mitochondria family were filtered out. After creating a phyloseq object, any ASVs with less 
than 5 total counts, then any samples with less than 100 ASVs were filtered out. Then any 
samples with NaN values in their SFA, MUFA, and PUFA columns were filtered out, leaving 
behind only 285 samples from the original 300. A rarefaction sampling depth of 3000 was 
chosen based on where the samples seemed to plateau, and a rarefied phyloseq object was 
created. This object contained 184 PD and 101 control subjects. 
 
Alpha-diversity and multivariate linear regression. Within the R environment, the 
tidyverse and phyloseq packages were used to load in and manipulate the previously created 
phyloseq object (20,21). The data was divided into PD and control patients to enable separate 
statistical analyses on PD and control subjects only. To visualize the relationship between 
each FA type and Shannon diversity of both PD and control subjects, a scatter plot containing 
a best-fit line was created, and the Spearman test was used to find their correlation coefficients 
because it is able to assess monotonic relationships with order-based associations. To identify 
which predictor variable has a significant association with Shannon diversity, a multiple 
linear regression model was conducted using the stats package that is pre-installed in R (24). 
This analysis contained age, sex, and farm residency as confounding variables, while SFA, 
MUFA, and PUFA were our predictor variables. 
 
Binning of Low, Medium, and High Fat Groups. FA values were categorized into “low”, 
“medium” and “high” based on quartile separations. “Low” was below the 25th percentile, 
“high” was above the 75th percentile and “medium” was in between. 
 
Indicator Species Analysis and Core Microbiome Analysis. The indicspecies package was 
used to perform indicator species analysis (ISA), while the microbiome and ggVennDiagram 
packages were used to perform core microbiome analysis (25-27). Furthermore, they both 
utilized relative abundance to perform the analysis. For ISA, the PD_Binned and 
Control_Binned data were analyzed separately, and the analysis was done only on SFA. Only 
bacterial genera with a p-value <0.05 were considered. In the core microbiome analysis, only 
the high and low SFA levels were analyzed for the PD_Binned and Control_Binned subjects. 
The evaluation thresholds were set to 0.0 and 0.8 for detection and prevalence, respectively. 
To visualize the results of core microbiome analysis, a Venn diagram that compared the high 
and low SFA levels between the PD and control patients was created.  
 
Differential Expression Sequence analysis and visualization. DESeq2 package was used 
to conduct the differential expression sequence analysis (DESeq) (28). DESeq analysis 
compared low SFA condition to high SFA condition in PD patients, and low SFA in PD 
versus control patients. Only ASVs with an absolute log2 Fold change of 2 and p-value<0.05 
were kept. To visualize the results of the aforementioned conditions, a bar plot was created 
that showed the increase/decrease in abundance relative to the reference point. These 
reference points were high SFA values in PD patients and low SFA values in control patients 
for the two different conditions. 
 
Functional analysis of the microbiome and visualization. Functional analysis was 
performed using QIIME2 and PICRUSt2, with the final output being analyzed in R using the 
following packages: readr, ggpicrust2, tibble, tidyverse, ggprism, DESeq2, "ggh4x”, and 
patchwork (18,20,28-40). A representative sequences fasta and a biological observation 
matrix (BIOM) feature table, were filtered in QIIME2 to remove anything with counts lower 
than five and then were plugged into the PICRUSt2 pipeline (29-34). This pipeline uses 
marker gene sequences to predict functional abundances (29-34). Visualization of the picrust2 
pipeline outputs used the ggpicrust2 package (36). The data was filtered to contain only the 
binned low SFA level samples for PD patients and controls. It was further filtered to exclude 
SFA levels that had no inputted values, remove any abundances less than 1000, and any 
pathway counts less than 100. The DESeq2 method was chosen to perform Differential 
abundance analysis (DAA) (36). The resulting DAA pathways were annotated using MetaCyc 
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(36). Abundances were graphed in a heatmap and principal component analysis (PCA) plot 
while the annotated pathways were graphed in a pathway error bar plot. 
 
RESULTS 

Weak positive significant association between serum SFA levels and the gut 
microbial diversity of Parkinson’s disease patients. Based on the statistical summary of 
the multivariate regression model, which evaluated the relationships between the Shannon 
diversity of the human gut microbiome and the serum levels of SFA, MUFA, and PUFA, only 
SFA was shown to have a statistically significant association (p-value = 0.035) 
(Supplementary Figure S1). This association was absent in healthy controls and appeared to 
be exclusive to PD patients (Table 1). Our scatterplot revealed a weak positive association 
(correlation coefficient = 0.0372, Supplementary Table S1) between the Shannon diversity 
and serum SFA in PD patients, despite its statistical significance (Supplementary Figure 
S1B). 
 
TABLE. 1 Statistical summary of Shannon diversity multiple linear regression 
model in PD subjects. p-value for the independent effect each variable has on 
Shannon diversity was computed using a linear regression model. *p-value < 0.05, 
**p-value<0.01 

Variable p-value 

Age 
Sex 

Farm Residency 
SFA 

MUFA 
PUFA 

0.00365** 
0.30525 
0.83059 
0.03500* 
0.05836 
0.74235  

 
2 indicator genera for PD in the low SFA group. ISA showed 2 ASV hits to be 

statistically significant indicators of the low SFA PD group (p-value of 0.001 and 0.03) (Table 
2). Using The Basic Local Alignment Search Tool (BLAST), the nucleotide sequences of the 
ASVs were linked to the Haemophilus genus and an uncultured bacterium (Table 2). Despite 
their statistical significance, the indicator values of these genera were low at 0.3202 and 
0.2659 (Table 2), suggesting that they are poor indicators of PD in low SFA conditions. There 
were no statistically significant ASV hits associated with the medium or high SFA groups 
among PD subjects. Furthermore, these 2 ASV hits were exclusive to the low SFA PD group 
and absent from the low SFA control subjects. 
 
TABLE. 2 ISA results of different SFA levels in Parkinson’s disease patients. Tabular summary 
visualizing the bacterial genus, associated SFA level, indicator value, and p-value of all statistically 
significant indicator genera for the low, medium, and high SFA groups of PD patients.  

Genus Low SFA Med SFA  High SFA Indicator Value p-value 
Haeomophilus 
Uncultured bacterium 

1 
1 

0 
0 

0 
0 

0.3202 
0.2659 

0.001 
0.030 

 
Low SFA PD subjects contain 3 exclusive core taxa and high SFA PD subjects 

contain none. Core microbiome analysis was run to identify the SFA level that is best 
associated with PD. Low SFA PD patients contained 3 exclusive core taxa (Figure 1). These 
3 ASVs belonged to the Alistipes, Bacteroides, and Agathobacter genera. However, no 
exclusive core taxa belonged solely to the high SFA PD subjects, nor were any core taxa 
shared only between high and low SFA levels in PD subjects (Figure 1). Furthermore, 7 core 
taxa members were shared between the 4 different condition combinations (Figure 1).  

25 and 47 genera had a significant increase and decrease in their expression levels 
in their respective analyzed cohorts. Since low SFA was a better indicator of PD (Table 3 
 and Figure 1), only the low SFA PD subjects were chosen as the comparison group for DESeq 
analysis. The outcome of the analysis showed that there are 25 significant genera with a p-
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value <0.05 and absolute value of log2 fold change > 2 in low versus high SFA conditions in 
PD patients (Figure 2A). While 47 genera had a significant change in their expression level 
in PD subjects with low SFA levels relative to control subjects with low SFA (Figure 2B).  

 
TABLE. 3 Statistical summary of Shannon diversity multiple linear regression model in 
control subjects. p-value for the independent effect each variable has on Shannon diversity 
was computed using a linear regression model.  

Variable p-value 
Age 
Sex 

Farm Residency 
SFA 

MUFA 
PUFA 

0.517 
0.796 
0.224 
0.330 
0.418 
0.233  

 

 

FIG. 1 Low SFA levels contain 3 
exclusive core taxa. Core 
microbiome analysis was done on 
binned SFA in both PD and control 
subjects. Relative abundance values 
were used to conduct the analysis. 
Detection and prevalence thresholds 
were set to 0.0 (presence/absence) 
and 0.8 (presence in 80% of samples) 
respectively. 
 
 

FIG. 2 DESeq analysis shows an increase in Akkermansia, Bifidobacterium, and Faecalibacterium genera only in PD 
versus control subjects with low SFA. Red bars indicate a decrease in abundance, while green bars indicate an increase. 
The error bands are log2 fold change standard error values. Threshold values were set to p-value<0.05 and an absolute value 
of log2 fold change>2. A) DESeq analysis on low (comparison group) versus high (reference group) SFA in PD subjects. 
B) DESeq analysis on PD (comparison group) versus control (reference group) subjects with low SFA levels. 
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Out of these 25 genera, 11 have decreased, while 14 have increased in abundance relative to 
high SFA (Figure 2A). Additionally, out of the 47 genera significant genera, 15 have 
decreased, while 32 have increased in abundance (Figure 2B). Interestingly, the Akkermansia, 
Bifidobacterium, and Faecalibacterium genera, which are commonly reported in PD patients, 
have increased in abundance relative to control subjects with low SFA levels (Figure 2B). 
However, only the abundance change in the Akkermansia genus was considered significant 
in the low versus high SFA levels in PD patients. Albeit, this genus had decreased in 
abundance relative to high SFA PD subjects (Figure 2A). 

Low SFA levels upregulate 21 pathways in the gut microbiome. Functional analysis 
of pathway regulation through PICRUSt2 found significant pathway regulation changes for 
21 pathways in low SFA levels between PD patients and controls (Figure 3A, B). Fifteen of 
these pathways are upregulated in PD patients and related to biosynthesis, while four are 
upregulated in PD patients and are related to degradation (Figure 3). The remaining two 
pathways are superpathways, which include the regulation of energetic pathways like 
glycolysis and the tricarboxylic acid (TCA) cycle are also upregulated in PD patients (Figure 
3). A form of menaquinol biosynthesis spans six of the pathways, while L-methionine 
biosynthesis is involved in two pathways. L-ornithine and L-arginine are both involved in 
two degradation pathways (Figure 3). The rest of the pathways involve unique metabolites 
except for the TCA cycle and glyoxylate bypass occurring in two separate super-pathways 
(Figure 3).  

 

 
DISCUSSION 

Parkinson’s disease (PD) is the fastest-growing neurodegenerative disease affecting 0.3% 
of the general population (41,42). With an aging global population, the number of PD patients 
worldwide is projected to double by the year 2040 (42). Disease management is complicated 
and involves utilizing pharmaceuticals, exercise therapy, and lifestyle interventions (41). 
Dopaminergic medication such as levodopa (L-DOPA) can also cause dyskinesia and motor 
fluctuations (41). Prior to the onset of PD, there is a prodromal period that can precede the 
disease by up to 20 years (43). This period is characterized by constipation, possible rapid 
eye movement (REM) sleep behavior disorder (RBD), depression, anxiety disorder, and 
cognitive impairments (43). Interestingly, recent studies have pointed to microbiota changes 
of prodromal PD lying along a continuum between healthy and PD cohorts (44). This calls 
for a more comprehensive understanding of the associations between various biomarkers and 
the microbiome composition and diversity which can allow for improvements in the treatment 
of PD (41,42,44). 

FIG. 3 Low SFA levels upregulate 21 pathways in the PD gut microbiome. Functional analysis of low SFA levels, 
produced using PICRUSt2, reveals an upregulation of 21 pathways in the PD microbiota (Blue) compared to controls (Red). 
The 21 pathways are evaluated on: A) relative abundance, B) log2 fold change, and adjusted p-value. An adjusted p-value is 
the smallest possible p-value. The Log2 fold change represents the controls in relation to PD. Comparing, log fold compared 
to, what are the pathways, what is an adjusted p-value, generated using PICRUSt. Red boxes indicate the 15 super pathways 
with altered regulation. 
 



UJEMI+  Tavakoli Hedayatpour et al. 

September 2024   Volume 10:1-12 Undergraduate Research Article https://jemi.microbiology.ubc.ca/ 7 

The ketogenic diet has shown promise as a beneficial dietary intervention in PD (45). A 
study looking specifically at very low-calorie KD found an increase in the number of bacteria 
that produce short-chain fatty acids (SCFA), a type of SFA (46). KD has also been shown to 
directly reverse the dysbiosis thought to be conducive to PD in mouse models by significantly 
changing the abundance of various genera in the microbiota (47). Currently, there are human 
clinical trials underway utilizing KD as a microbiota‐targeted dietary intervention measuring 
the changes in the microbiota longitudinally in British Columbia, Canada (48). 

Although KD has shown benefits as an intervention, the side effects can include 
hypertriglyceridemia and increased serum FA including SFA, MUFA, and PUFA (5,7,9,45). 
Given that longitudinal studies have indicated an increased incidence of PD with higher SFA 
intake, while effects of increased PUFA and MUFA are yet to be shown on the microbiome 
of PD patients (2,10,12,13); we aimed to unveil the association of SFA, MUFA, and PUFA 
with the microbiome in PD patients.  

Multiple linear regression association between SFA levels and gut microbial 
diversity. To run the multivariate linear regression model, we chose to control for age, sex, 
and farm residency when analyzing the 3 FA types. Only SFA was associated with Shannon 
diversity in PD patients. Despite the statistically significant relationship found in SFA, the 
association is extremely weak. Although our finding from the regression model alone is 
insufficient to conclude the role of SFA levels in relation to PD outcomes, previous research 
has found that increased dietary intake of SFA is linked to elevated risk of PD development 
(9,49). Based on the weak correlation coefficient, we cannot definitely determine any 
directional associations.  

ISA indicated the genus Haemophilus and an uncultured bacterium in the low SFA 
group. ISA revealed Haemophilus and an uncultured bacterium as possible indicators of PD 
in patients with low SFA levels (Table 2). The Haemophilus genus is associated with a 
plethora of neurological disorders (50-52). Of note, Haemophilus was positively correlated 
with the negative psychiatric symptoms of Schizophrenia (50). This is significant since the 
prevalence of schizophrenia spectrum disorder later in life (53). Haemophilus is 
underrepresented in PD cohorts compared to healthy controls (51). Systematic reviews have 
confirmed these findings with Haemophilus being lower in abundance in PD patients as well 
(52). Given the low indicator value of 0.3202, we cannot confidently state that Haemophilus 
is a good indicator of PD in subjects with low SFA. 

Core microbiome showed that low SFA in PD patients has 3 exclusive core taxa. The 
core microbiome analysis conducted on low SFA subjects in both PD and control categories 
showed that low SFA PD subjects contain 3 exclusive core taxa. These hits belonged to the 
Alistipes, Bacteroides, and Agathobacter genera. One study has shown that Alistipes genus 
increases in abundance in PD patients (52). Additionally, upon further analysis of the DESeq 
results, none of these specific ASVs were seen to decrease/increase significantly in either of 
the two conditions. However, similar to the ISA findings, the low SFA was the only SFA 
level in PD patients that contained any exclusive core taxa; this possibly alludes to the fact 
that the 3 exclusive ASVs are potentially a good indicator of PD in patients with low serum 
SFA.  

DESeq2 revealed major changes in the microbiota composition. Our DESeq analysis 
revealed several genera abundance differences between low and high SFA in PD subjects, 
and PD versus control subjects with low SFA. These notable genera include Akkermansia a 
mucin-degrading, Faecalibacterium which is a main butyrate-producing (a type of SCFA) 
bacteria, and Bifidobacterium (52,54,55).  

The Akkermansia genus is thought of as a healthy bacteria genus as it has been associated 
with enhanced wound healing, protection against obesity, and more (4). However, it has also 
been seen to have a greater abundance in the stool sample of Parkinson’s disease patients 
relative to healthy control patients (4). Furthermore, it is thought that the increase in this genus 
alongside the decrease in SCFA-producing bacteria, can lead to an increase in intestinal 
permeability and inflammation which can facilitate the exposure of the enteric nervous 
system to toxins such as LPS (4). This can lead to an abnormal aggregation of alpha-synuclein 
proteins, which is thought to be a contributor to PD pathogenesis (4,56). However, we can 
see that relative to PD subjects with high SFA, there has been a decrease in its abundance 
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(Figure 2A). This is a possible indicator of the beneficial role that low SFA levels can have 
in PD patients. 

Faecalibacterium genus is a butyrate-producing bacteria that has been linked with 
potential positive effects on the intestinal mucosa and PD (4,55,57). Based on the DESeq 
results, we can see that it had an increase in abundance in low SFA PD subjects relative to 
low SFA control subjects (Figure 2B). Furthermore, Bifidobacterium is another healthy 
bacterium that was shown to protect dopaminergic neurons in PD mice (58). While the 
increase in its abundance in PD versus control patients with low SFA is congruent with 
established literature, it has not been consistently shown in PD-related changes of gut 
microbial composition unlike the Akkermansia genus (4). 

Overall, the changes we see associated with low SFA in both Akkermansia and 
Faecalibacterium genera, potentially allude to the fact that this level of serum SFA can have 
a positive outcome for PD subjects. However, since the increase in abundance of 
Bifidobacterium may be associated with PD medication (52), we won’t be able to state the 
same for this genus. 

PICRUSt2 highlighted menaquinol and L-methionine as metabolites upregulated in 
Low SFA. The functional analysis of the gut microbiome revealed significant changes 
between PD patients and controls with low SFA levels. Specifically, 21 pathways were 
upregulated in PD patients compared to controls (Figure 3A). Eight of the 21 pathways are 
related to the biosynthesis of menaquinol (Vitamin K2) suggesting that the gut microbiome 
produces more vitamin K2 for PD patients rather than controls with low SFA levels. Current 
literature relating to vitamin K describes it as beneficial to PD patients (59,60). It has the 
ability to suppress neuroinducers like rotenone and paraquat, and vitamin K is currently being 
used in clinical trials as a treatment for PD (59,60). Furthermore, it repairs nerve cells using 
the mitochondrial quality control loop (61). In Mice models, administrations of 500 mg/kg of 
Vitamin K2 per day orally, for a 2-week period, induced higher levels of Firmicutes (62). This 
is significant as Firmicutes are decreased in PD patients (2). Two L-methionine pathways are 
upregulated in PD patients as well. Previous studies depict L-methionine as beneficial to PD 
patients (63,64). Cantesi et al. found L-methionine to protect against both oxidative stress and 
mitochondrial dysfunction in PD patients (65). Furthermore, L-methionine was seen to have 
therapeutic effects in clinical trials, indicating improvements in tremors and rigidity (63). 
Moreover, one of the L-methionine biosynthesis pathways occurs using sulfhydration which 
has been seen to benefit neuro-protective processes of parkin, a ligase that removes damaged 
mitochondria (64). In terms of the gut microbiome methionine, an enantiomer of L-
methionine, has been investigated (66). A high methionine diet (2g/kg of body weight) was 
found to increase the abundance of Faecalibacterium while previous PD studies claim 
Faecalibacterium decreases in abundance for PD patients (66,67). Since Faecalibaculum 
positively influences PD, the increase in L-methionine biosynthesis further supports the 
association of low SFA with beneficial metabolites in PD patients (57). 

With around half of the significant regulation changes seeming to benefit PD patients, the 
data suggest that low SFA levels are associated with beneficial pathways for PD patients 
(Figure3A, B). However, it is important to note that not all of the changes support this 
conclusion. Both L-arginine and L-ornithine degradation-related pathways are upregulated 
despite both of them being proposed as beneficial for PD patients (Figure 3A, B) (68,69). 
Despite these three conflicting pathways, at least ten of the 21 pathway changes support that 
low SFA levels are associated with beneficial pathways in PD patients (Figure 3A, B).  

 
Limitations The dataset by Cirstea et al. presents several limitations for our research. Given 
the cross-sectional nature of the data, no causal relationships can be made. There could also 
be a better balance between healthy and PD patients (n=103 and n=197 respectively) (2). 
Finally, the time of blood sample collection with regard to the subject’s mealtimes was not 
standardized, which can impact the binning process of the FAs (2).  FAs are known to take 
up to 4 hours to digest, meaning standardizing data collection to 4 hours after meals could 
have improved the quality of the data (70). This can lead to false findings in the ISA, core 
microbiome, DESeq, and PICRUSt2 analyses since they utilized FA levels to conduct their 
respective analysis. 
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Within our group’s work, it is possible that we did not account for all relevant 
confounding variables in our multivariable linear regression model. While we accounted for 
variables such as age, location (farmlands), and sex; elements of diet (e.g., caffeine), PD 
therapeutics, and important biomolecules (e.g., vitamin D) were not considered. This is 
relevant since literature findings have shown that caffeine can significantly affect the gut 
microbiome composition (71). Alternatively, this may have obscured relationships between 
Shannon diversity and MUFA and PUFA, as our analysis revealed no correlation. 
 
Conclusions The aim of our study was to examine the effects of serum SFA, MUFA, and 
PUFA levels on PD patients’ microbiome diversity and functional pathways. Overall, we 
found that SFA showed a weak positive relation with microbiome Shannon diversity, while 
MUFA and PUFA showed no significant correlations. We identified several bacterial genera 
which are associated with low levels of SFA. Haemophilus genus is associated with low SFA 
and is a bacterium that is linked with poor prognosis in schizophrenia and other neurological 
disorders. Core microbiome analysis showed that the 3 exclusive core taxa in low SFA PD 
patients are potentially an indicator of PD in low SFA subjects. DESeq results indicated a 
relative decreased abundance of Akkermansia in the low vs high SFA PD cohort, a genus 
persistently upregulated in the PD microbiome. With that, Faecalibacterium, a butyrate-
producing bacteria, had a significant increase relative to low SFA control subjects. This 
highlights the potential beneficial outcome of low serum SFA levels for PD patients. Pathway 
analysis also revealed that menaquinol (Vitamin K2) and L-methionine are up-regulated in 
low SFA, both are linked with protective anti-inflammatory properties, while menaquinol 
(Vitamin K2) is currently being investigated as a potential therapeutic drug for PD. Together, 
serum SFA levels are positively associated with gut microbiome diversity, while low serum 
SFA is associated with several specific bacterial abundance changes and metabolites 
beneficial to PD. This indicates low SFA as a promising potential treatment for PD. However 
further research should look into determining the impact and comparative importance of each 
factor we have illustrated here before further conclusions can be made. 
 
Future Directions The uncultured bacterium found in our ISA analysis was just recently 
identified as the novel species Merdimmobilis hominis in February 2023 (72) (Table 3). Given 
our discovery of its link with low SFA in PD patients, it would be prudent to see what systems 
and pathways it is associated with, and if it affects PD prognosis. 

In addition, future Microbiota‐targeted dietary interventions utilizing KD can investigate 
serum SFA levels longitudinally and find more robust associations between low and high 
SFA and the gut microbiome. With that, utilizing a random sampling of the population instead 
of choosing spouses of PD patients can ensure a more diverse microbiome analysis.  

Future studies could look into the interplay between PD medications and abundance 
changes in the Bifidobacterium genus, as well as a more comprehensive study controlling for 
other confounders such as PD medications and diet would make sure that the findings are 
statistically more rigorous. Given the dataset from Cirstea et al. came from a cross-sectional 
study, longitudinal studies should be done to see the long-term changes in the gut microbiome 
of PD patients with different levels of SFA (2). This could paint a more holistic picture of 
SFA’s association with the microbiome of PD patients. 
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