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SUMMARY   Previously, gut microbiome research has predominantly focused on Western, 
educated, industrialized, rich and democratic (WEIRD) societies, which limits the 
generalizability and identification of patterns across ethnicities. This study explores the link 
between obesity and microbiome variation in an ethnically representative group, which is 
compared with other global datasets. In this study, we investigated the effect of obesity on 
the gut microbiome using a dataset with 442 Colombian adults to provide a valuable example 
of diversity in research. We first analyzed the alpha and beta diversity of obesity-related and 
general factors. This allowed us to see which ones significantly affected gut microbiota. This 
revealed some individual obesity-linked predictors affected variation in composition and 
diversity. However, when the dataset was filtered into obese and non-obese individuals, no 
specific microbial community compositional differences were found. Despite this, core 
microbiome analysis revealed certain gut bacterial species were consistently found in obese 
or non-obese groups. Finally, using model selection to contextualize obesity-related metrics 
among other predictors, we found that some obesity metrics significantly explained diversity 
but not composition. This study suggests that although there may be a significant link between 
obesity and gut microbial variation in WEIRD populations, the patterns may be potentially 
different in non-WEIRD populations such as Colombian adults.  
 
 
INTRODUCTION 

he diversity and composition of the gut microbiome is associated with various lifestyle 
factors, beyond just obesity, including age, diet, smoking, and exercise (1). However, 

the specific determinants and the extent of their impact on gut microbial variation remains 
unclear. When assessing the effects of obesity on the diversity/composition of the gut 
microbiome, it is imperative to consider the impact of other potential predictors. To evaluate 
the relative impact of various combinations of predictors within a dataset, researchers may 
employ model selection as an appropriate tool. Model selection compares various candidate 
“models” or combinations of predictors to determine which model best explains variation in 
the data. This can be applied to gut microbiome research to determine the combination of 
metadata categories or lifestyle factors that best explain microbial variation. 

Historically, research on links between the gut microbiome and obesity has been done on 
Western, educated, industrialized, rich and democratic (WEIRD) societies (2-4). However, it 
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remains unclear whether the findings apply universally across different ethnic groups. 
Notably, WEIRD populations have been found to have reduced gut microbial diversity 
compared to non-WEIRD populations (2). This may be due to cultural differences such as 
diet, pollution, exercise, sanitation disparities and stressors, all of which impact the gut 
microbiome (2). To address this gap in knowledge, we explore the link between gut microbial 
variation and obesity in anon-WEIRD population using data from Colombian adults. This 
adds to the growing body of literature on diverse populations in science (5). As a disclaimer, 
the term “non-WEIRD” (Western, educated, industrialized, rich and democratic) is used to 
highlight populations beyond the typical North American and European societies that have 
been the historical focus of research. However, we recognize the potential misinterpretation 
of this term to refer to Colombia, which is industrialized and non-rural. While this is true, we 
refer to Columbia as non-WEIRD as it represents a distinct socio-cultural context with notable 
differences in lifestyle and diet. We aim to contribute valuable insights into obesity and gut 
microbial variation in an ethnically representative group such as Columbia, which is what the 
term “non-WEIRD” attempts to encapsulate. We pursued three main aims in our study. The 
first aim was to examine alpha and beta diversity across all metadata categories. This was 
done to better understand which predictors individually affect microbial diversity and 
composition. We hypothesized that obesity-related metrics would impact microbiome 
diversity and composition. Our analysis revealed that several obesity-related metrics 
significantly impact alpha and beta diversity. To further explore this in our second aim, we 
conducted a comparison of gut microbial composition between "obese" and "non-obese" 
individuals, as defined by global health statistics. It is important to note that the Colombian 
government defines Obesity using only BMI in statistics. However, to achieve a more robust 
analysis, we used body fat percentage and waist circumference for a better representation of 
obesity, aligning with globally-accepted definitions. Considering the widely-established links 
in other populations (mostly WEIRD), we predicted obesity would have a significant impact 
on microbiome variation. For our third aim, it was necessary to understand the relative 
importance of obesity metrics compared to other predictors. To achieve this, we employed 
model selection, allowing us to determine the combination of predictors that best explains 
microbial variation. 

 Our results contribute to understanding the distinctive connections between obesity and 
the gut microbiome within a non-WEIRD population. Through a comprehensive analysis of 
this dataset and a special focus on the relative importance of obesity, our study offers valuable 
insights into the factors influencing the gut microbiome. 

 
 
METHODS AND MATERIALS 

Dataset and metadata. The dataset used in this study was derived from the research article 
“Gut microbiota is associated with obesity and cardiometabolic disease in a population amid 
Westernization” by Cuesta-Zuluaga et al. (6). It comprised of 16S rRNA gene sequencing 
data from fecal samples collected from 441 individuals (227 men and 214 women) between 
the ages of 18 and 65, residing in Colombia. The metadata accompanying the dataset was 
used as input for Quantitative Insights Into Microbial Ecology 2 (QIIME2) analysis (7). The 
original raw DNA reads from the study by Cuesta-Zuluaga et al. can be found at the SRA-
NCBI under BioProject PRJNA417579. The R code to reproduce statistical analyses for this 
study is available in the supplemental. 
  
Preliminary data processing and ASV determination. The raw sequence data was 
processed using the QIIME2 pipeline (version 2021.11). Single-end fastq files in Phred33V2 
format were imported and demultiplexed single-end fastq files using the. Subsequently, th e 
demultiplexed samples were then denoised with the Divisive Amplicon Denoising Algorithm 
2 (DADA2) method to determine amplicon sequence variants (ASVs) (8). A truncation length 
of 250 base pairs was selected. 
  
Taxonomic classification and filtering. ASVs were classified using a Naïve Bayes classifier 
was trained using the SILVA (SSU and LSU rRNA sequences of Bacteria, Archaea and 
Eukarya) reference database (version 138-99) (9, 10). Prior to training, the reference 
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sequences were first trimmed according to the 16S rRNA gene V4 region primers (515f: 5’-
GTGCCAGCMGCCGCGGTAA-3’, 806R: 5’GGACTACHVGGGTWTCTAAT-3’) using 
the 'qiime feature-classifier extract-reads' command. The trained classifier was obtained using 
the 'qiime feature-classifier fit-classifier-naive-bayes' command (11). The trained classifier 
was used to classify ASVs with the 'qiime feature-classifier classify-sklearn' command (12). 
Taxonomic bar plots were generated using the 'qiime taxa barplot' command, and Eukaryota, 
mitochondria, and chloroplasts were removed using the ‘qiime taxa filter-table’ command 
(7). 
 
 Phylogenetic tree construction and rarefaction. To perform phylogenetic diversity 
analysis, a phylogenetic tree was constructed using the ‘qiime phylogeny align-to-tree-mafft-
fasttree’ command. This process involved aligning the representative sequences using 
Multiple Alignment using Fast Fourier Transform (MAFFT), and constructingan unrooted 
tree using FastTree (13). The tree was then rooted using the midpoint rooting method. Alpha 
rarefaction curves were generated using the ‘qiime diversity alpha-rarefaction’ command, 
which allows for assessing the sequencing depth and sample coverage (14). Based on the 
alpha rarefaction curve, a rarefied table was generated with a sampling depth of 20,655 (14). 
The ASV table, rooted phylogenetic tree, taxonomy, and representative sequences were 
converted and exported for further analysis in R. 
 
Alpha and beta-diversity analysis on all metadata categories. The QIIME2 output files of 
feature table, metadata, taxonomy, and phylogenetic tree were imported into R. A phyloseq 
object was created using these four files (15). A custom R loop was implemented to conduct 
a linear regression model for all 35 metadata categories as predictors. P-value corrections 
were done using the Benjamini-Hochberg method, and a richness plot was created and saved 
for each metadata category. A similar loop was created to run PERMANOVA tests for all 35 
metadata categories as predictors. Unweighted Unifrac was used as the distance metric. P-
value corrections were done using the Benjamini-Hochberg method. A Principal Coordinate 
Plot (PCoA) plot was created for each predictor. Tables with predictors and their adjusted P-
values were also created for alpha and beta diversity analysis. 
  
Analyzing compositional differences between obese and non-obese individuals. Samples 
were filtered to only include individuals who either satisfied both waist circumference and 
body fat percentage obesity threshold (obese); or neither of them (non-obese). For females, 
samples with Body Fat Percentage ≥ 25% and Waist Circumference ≥ 80cm were considered 
obese, while for males, samples with Body Fat Percentage ≥ 30% and Waist Circumference 
≥ 90cm were considered obese. Subsequently, phyloseq object was created by combining the 
filtered metadata with the feature table, taxonomy table, and phylogenetic tree. PCoA analysis 
was performed using the Unweighted Unifrac algorithm as the input. 
 
Core microbiome analysis on obese and non-obese individuals. The core bacterial taxa in 
obese and non-obese individuals were found by calculating the core microbiome using the 
“microbiome” package in R (16). The parameters were set a frequency of 0.001 and the 
prevalence at 0.10. The results for obese and non-obese individuals were compared using a 
Venn diagram generated with the "ggVennDiagram" package (17). 
 
Performing model selection on the dataset. All subsequent analyses were conducted using 
the phyloseq object. The full alpha-diversity model was created by conducting a linear model 
on all 35 predictors from the metadata using the Shannon index. The full beta-diversity model 
was created by conducting a PERMANOVA test on all 35 metadata predictors using the 
Weighted Unifrac metric (18). To select the final modelsmodels we implemented a stepwise 
regression by Akaike’s Information Criteria (AIC) scoring. The alpha diversity model used 
the ‘stepAIC()’ function from the MASS package, while the beta diversity model used a 
custom loop to drop predictors from the model based on AIC score 
(https://github.com/kdyson/R_Scripts/blob/0130c64cfc1437c340a1237889456f4da31da871/
AICc_PERMANOVA.R).  
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RESULTS 

Metadata categories related to obesity, general health, or location significantly 
influenced microbial diversity and composition. Alpha diversity analysis was performed 
on all 35 metadata categories using Shannon as the diversity metric. The results revealed that 
three metadata categories had a significant impact on diversity: “Adiponectin Levels” 
(Shannon, p=0.019), “Animal Protein Intake” (Shannon, p=0.033), and “City” (Shannon, 
p=0.000) (Table 1). “Adiponectin levels” have been found to have underlying links to obesity, 
“Animal Protein Intake” is connected to overall health status, and “City” is location-related. 
Notably, only the cities of Bogota and Medellin had significant effects on diversity within the 
city category.  

 
TABLE. 1 Metadata categories related to obesity, general health, or location 
showed significance in alpha diversity. Linear model with Shannon Index was 
performed individually on all 35 predictors within the dataset. Estimates indicate the 
increase or decrease in Shannon diversity. Significant results are indicated by an 
asterisk (* = P<0.05, ** = P<0.01, *** = P<0.001). n = 442. 

Metadata Category Estimate P-value Significance 
Adiponectin (ng/mL) 0.026 0.019 * 

Age (years) 0.006 0.096 ns 
Ages Groups (years)a 0.136 0.102 ns 

BMI (kg/m2) -0.004 0.677 ns 
BMI Class Obese -0.058 0.584 ns 

BMI Class Overweight -0.154 0.186 ns 
Body Fat Percentage (%) 0.005 0.555 ns 
Calorie Intake (kcal/day) 0.000 0.694 ns 

Cardiometabolic Status Healthy 0.041 0.630 ns 
City (Bogota) 0.479 0.000 *** 

City (Bucaramanga) 0.047 0.715 ns 
City (Cali) -0.227 0.118 ns 

City (Medellin) 0.311 0.016 * 
Diastolic Blood Pressure (mmHg) 0.000 0.987 ns 

Fiber (g/day) 0.012 0.132 ns 
Glucose (mg/dL) 0.001 0.771 ns 

Hemoglobin a1c (%) 0.071 0.258 ns 
C-reactive protein (mg/L) -0.011 0.279 ns 

Insulin (IU/mL) 0.000 0.928 ns 
Latitude (°) -0.017 0.303 ns 

Total Cholesterol (mg/dL) 0.001 0.357 ns 
High-density lipoprotein (mg/dL) 0.004 0.215 ns 
Low-density lipoprotein (mg/dL) 0.001 0.303 ns 

Very low density lipoprotein (mg/dL) -0.001 0.637 ns 
Triglycerides (mg/dL) 0.000 0.526 ns 

Medication (Yes)b 0.014 0.871 ns 
Carbohydrates (% Daily Value)c 0.003 0.802 ns 
Total Protein (% Daily Value)c 0.008 0.779 ns 

Total Fat (% Daily Value)c -0.014 0.419 ns 
Animal Protein (% Daily Value)c -0.016 0.033 * 

Monounsaturated Fat (% Daily Value)c -0.031 0.474 ns 
Polyunsaturated Fat (% Daily Value)c -0.066 0.230 ns 

Saturated Fat (% Daily Value)c -0.005 0.855 ns 
Sex (Male)d -0.092 0.271 ns 

Smoker (Yes)e -0.074 0.562 ns 
Stool Consistency Hard 0.009 0.968 ns 

Stool Consistency Normal 0.374 0.127 ns 
Stool Consistency Soft 0.137 0.715 ns 

Systolic Blood Pressure (mmHg) -0.001 0.641 ns 
Metabolic Equivalent of Time (min/week) 0.000 0.774 ns 

Waist Circumference (cm) -0.001 0.706 ns 

a  done in reference to the age group 41-62 
b done in reference to “No” to medications 
c  % of daily calorie consumption 
d done in reference to “Female” 
e done in reference to “No” to smoking 
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Beta diversity analysis was also performed on all 35 metadata categories using 
Unweighted Unifrac as the distance metric. The results showed that 15 unique predictors 
significantly influenced microbial composition (Table 2). Among those 15, some predictors 
were found to be closely linked to obesity, namely, “body mass index (BMI)” 
(PERMANOVA, 0.012), “Calorie Intake” (PERMANOVA, 0.047), and “Waist 
Circumference” (PERMANOVA, 0.003). Another subset of significant predictors, such as 
“Blood Pressure” (PERMANOVA, 0.002), “Fiber Intake” (PERMANOVA, 0.002), and 
“Medications” (PERMANOVA, 0.001), was related to general health status. Furthermore, 
two of the 15 significant predictors, “City” (PERMANOVA, 0.000) and “Latitude” 
(PERMANOVA, 0.000), were location-related. Because of the observed association between 
alpha and beta diversity and obesity metrics, we next asked whether obesity itself has any 
effect on gut microbial composition. To test this, we constructed an obesity definition using 
globally accepted metrics and examined compositional differences. This contrasts with the 
above analysis, where metrics were looked at individually. 

 
TABLE. 2 Metadata categories related to obesity, general health, or location 
showed significance in beta diversity. PERMANOVA (Unweighted Unifrac 
distance metric) was performed individually on all 35 predictors within the dataset. 
R2 values indicate the proportion of microbial composition explained by each 
predictor. Significant results are indicated by an asterisk (* = P<0.05, ** = P<0.01, 
*** = P<0.001, **** = P<0.0001). n = 442.  

Metadata Category R2 P-Value Significance 
Adiponectin (ng/mL) 0.003 0.100 ns 

Age (years) 0.003 0.207 ns 
Age range 0.003 0.076 ns 

BMI (kg/m2) 0.004 0.012 * 
BMI Class 0.007 0.022 * 

Body Fat Percentage (%) 0.003 0.313 ns 
Calorie Intake (kcal/day) 0.003 0.047 * 
Cardiometabolic Status 0.003 0.122 ns 

City 0.023 0.000 **** 
Diastolic Blood Pressure (mmHg) 0.004 0.003 ** 

Fiber (g/day) 0.004 0.002 ** 
Glucose (mg/dL) 0.003 0.555 ns 

Hemoglobin a1c (%) 0.003 0.208 ns 
C-reactive protein (mg/L) 0.003 0.157 ns 

Insulin (IU/mL) 0.002 0.905 ns 
Latitude (degrees) 0.005 0.000 *** 

Total Cholesterol (mg/dL) 0.003 0.323 ns 
High-density lipoprotein (mg/dL) 0.003 0.040 * 
Low-density lipoprotein (mg/dL) 0.003 0.479 ns 

Very low density lipoprotein (mg/dL) 0.003 0.020 * 
Triglycerides (mg/dL) 0.004 0.015 * 

Medication 0.005 0.001 *** 
Carbohydrates (% Daily Value) 0.003 0.158 ns 
Total Protein (% Daily Value) 0.002 0.952 ns 

Total Fat (% Daily Value ) 0.003 0.059 ns 
Animal Protein (% Daily Value) 0.004 0.002 ** 

Mono-unsaturated Fat (% Daily Value) 0.003 0.246 ns 
Poly-unsaturated Fat (% Daily Value) 0.003 0.195 ns 

Saturated Fat (% Daily Value) 0.003 0.146 ns 
Sex 0.005 0.000 **** 

Smoker 0.003 0.085 ns 
Stool Consistency 0.013 0.000 **** 

Systolic Blood Pressure (mmHg) 0.004 0.002 ** 
Metabolic equivalent of time (min/week) 0.003 0.485 ns 

Waist Circumference (cm) 0.004 0.003 ** 
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Microbial gut composition is not significantly affected by obesity status. Since 
obesity-related metrics were identified as potentially important predictors of both alpha and 
beta diversity in our previous screen, we next investigated whether beta diversity differed 
between obese and non-obese individuals. We filtered the dataset to include those who 
satisfied two obesity metrics (waist circumference, body fat percentage) or neither and 
performed a PERMANOVA. After filtering there were 267 individuals remaining from the 
initial 442 sample size. Of these 267 individuals, only 23 were non-obese). Results revealed 
no significant difference in microbial composition between obese and non-obese individuals 
(PERMANOVA, p=0.092) (Fig. 1A). Upon observing these results, we then examined 
whether core microbiome members differed between these two groups. Among the ASV’s 
that were considered core post-filtering, 35% of them were associated only with obese or non-
obese individuals (n=83) (Fig. 1B). The remaining 65% were associated with both groups 
(n=149). 

 
 

Age, city, sex, and diet have significant effects on Shannon diversity in the final 
model. Model selection on a full linear model with 35 predictors (AICc=860.9) resulted in a 
final model with only nine predictors (AICc= -204.4). Out of the nine remaining predictors, 
four had significant effects on Shannon diversity (p<0.05). Another four were found to have 
no significant effect on Shannon diversity (p>0.05). Bogota city (done in reference to 
Barranquilla) had the largest increase in Shannon diversity (p=0.000), while Cali had the 
largest decrease (p=0.070) (Table 3). Age increased in Shannon diversity (p=0.013), while 
other significant predictors, like diet and sex (p= 0.011 for Carbohydrates (% Daily Value), 
p= 0.009 for Total Fat (% Daily Value), p= 0.001 for Animal Protein (% Daily Value) and 
p=0.016 for sex), decreased in Shannon diversity.  

FIG. 1 Obesity does not significantly 
affect microbial gut composition. A) 
PCoA plot of obese vs. non-obese 
individuals (PERMANOVA, p=0.092) 
using Unweighted Unifrac distance 
metric (n=267). B) Core microbiome 
analysis on obese vs. non-obese 
individuals (prevalence = 0.10, 
abundance = 0.001) The count 
represents microbial species. n = 278. 
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TABLE. 3 Model selection returned a combination of nine predictors that best 
explain variance in alpha-diversity. A linear model (response variable = Shannon 
Index) was performed on the full model of 35 predictors. Adjusted AIC (AICc) score 
for full model = 860.9. AICc score for the final model = -204.4. Estimates indicate 
the increase or decrease in Shannon diversity. For the following categorical 
variables: Cities are in reference to Barranquilla city, “Medication (Yes)” is in 
reference to “Medication (No)”, “Sex (Male)” is in reference to “Sex (Female)”. 
Significant results are indicated by an asterisk (* = P<0.05, ** = P<0.01, *** = 
P<0.001, **** = P<0.0001). n = 442. 

Metadata Category Estimate P-Value Significance 
Age (Years) 0.011 0.013 * 

Body Fat Percentage (%) -0.017 0.102 ns 
City (Bogota) 0.494 0.000 **** 

City (Bucaramanaga) 0.029 0.824 ns 
City (Cali) -0.245 0.070 ns 

City (Medellin) 0.411 0.001 *** 
Insulin (μIU/mL) 0.008 0.130 ns 
Medication (Yes) -0.124 0.147 ns 

Carbohydrates (% Daily Value) -0.075 0.011 * 
Total Fat (% Daily Value) -0.089 0.009 ** 

Animal Protein (% Daily Value) -0.029 0.001 *** 
Sex (Male) -0.221 0.016 * 

 
City, circulating/consumed fat, and stool consistency have significant effects on 

microbial community composition in the final model. The full PERMANOVA model with 
all 35 predictors (AICc = -337.1) was reduced to a model with only 6 predictors (AICc = 
689.9) (Table 4). Stool consistency (R2 = 0.037) represented the largest proportion of 
variation, while animal protein (R2 = 0.005) represented the lowest. City (R = 0.029) was 
found to represent the second highest proportion of variation, while triglycerides (R = 0.008) 
and daily monounsaturated fat intake (R = 0.011) represented a lower percentage in variation. 
Of the six unique predictors, two were found to have no significant effect on microbial 
composition (R2= 0.005 for Animal Protein (% Daily Value) and R2= 0.007 for sex). 
 
TABLE. 4 Model selection returned a combination of six predictors that best 
explain variation in beta-diversity. PERMANOVA (Weighted Unifrac distance 
metric) was performed on the full model of 35 predictors. AICc score for the full 
model = 689.9. AICc score for the reduced model = -337.1. R2 values indicate the 
proportion of variation explained by each predictor. Significant results are indicated 
by an asterisk (* = P<0.05, ** = P<0.01, *** = P<0.001). n = 442. 

Metadata Category R2 P-Value Significance 
City 0.029 0.002 ** 

Triglycerides (mg/dL) 0.008 0.039 * 
Animal Protein (% Daily Value) 0.005 0.137 ns 

Monounsaturated fat (% Daily Value) 0.011 0.012 * 
Sex 0.007 0.054 ns 

Stool Consistency 0.037 0.001 *** 
 

 
DISCUSSION 

Obesity-linked predictors significantly affected diversity and composition. Alpha and 
beta diversity analysis of all 35 metadata categories revealed a group of significant predictors 
with underlying links to obesity (Table 1, 2). The predictor “Adiponectin Levels” 
significantly affected diversity, while the predictors “Calorie Intake”, “BMI”, and “Waist 
Circumference” significantly affected composition. Low adiponectin levels have previously 
been found to be associated with being overweight/obese and the emergence of non-alcoholic 
fatty liver disease (NAFLD) (19), both conditions related to excess adipose tissue. We 
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observed that individuals with lower adiponectin levels had more variable diversity (Fig. S1 
Panel D), while individuals with high adiponectin levels had relatively high diversity with 
less variation. It is speculated that the group with low adiponectin levels may encompass both 
individuals and individuals who have the conditions of obesity/NAFLD, which may increase 
variance in microbiome metrics. Furthermore, higher values for BMI, caloric intake, and 
waist circumference have widely established links to obesity (19, 20). The PCoA plots for 
these three metrics (Fig. S2 Panels A, C, and N) indicated slight clustering of the data points 
with higher values. This suggests that individuals with high values in these categories share 
similar gut microbiome compositions, and also that these points may represent individuals 
who are obese. The condition of obesity may result in changes to the gut microbiomes of 
these individuals, making them more compositionally similar. 

Not all obesity-related metrics significantly affected gut microbial community diversity 
and composition. For example, body fat percentage did not significantly influence diversity 
and composition (Fig. S1 Panel C). However, other obesity-linked metrics did have 
significant effects (BMI, caloric intake, and waist circumference). Therefore the results may 
be explained by obesity itself not contributing to microbial composition significantly, but 
rather other underlying obesity-linked factors might be responsible for shifts in the 
microbiome. 

Previous literature has linked obesity and obesity-related metrics with gut microbial 
variation, but these studies have mostly been predominantly focused on WEIRD populations 
(21). Past literature has revealed that non-WEIRD populations have increased diversity and 
altered composition of the gut microbiome in comparison to WEIRD populations (22, 23). 
Specifically, these differences have been shown between Latin American populations (which 
includes Colombians) and North American populations from metropolis areas (22, 23). These 
differences may be attributed to dietary disparities among the two populations (23), as well 
as different levels of exposure to bacterial species in water supplies due to the reduced level 
of safety management in Latin America (24). Together, these factors may explain the 
differences observed in the above results. Although previous literature has shown WEIRD 
populations having links between obesity and both alpha and beta diversity, the 
aforementioned differences between WEIRD and non-WEIRD populations suggests these 
exact same links should not be expected in both populations. This could explain why body 
fat percentage was found to be an insignificant predictor of beta diversity in our dataset, while 
other studies on WEIRD populations have shown strong correlations between body fat and 
gut microbial composition (25). 

There are no significant differences in microbial gut composition between obese and non-
obese individuals. Beta diversity analysis on individuals filtered into obese and non-obese 
categories revealed no significant compositional differences between the two groups (Fig. 
1A). These findings diverge from most current literature (26). Various studies have found 
significant correlations between obesity status and microbial gut composition, but most 
studies exploring gut microbiome and obesity have been done on WEIRD societies (27, 28) 
Differences in microbiome variation between ethnic groups are known to exist, and 
Colombian gut microbiota, in particular, differ from North Americans, Europeans, and Asians 
(27, 28). Therefore, patterns found linking microbial gut composition and obesity within 
studies on WEIRD populations should be cautiously applied to other populations, such as in 
Colombian populations.  

Our dataset also included statistical limitations that may have obscured differences in gut 
microbiome composition between obese and non-obese individuals. Specifically, there are 
disproportionately more obese than non-obese individuals in the data post-filtering, and the 
absence of non-obese females (Fig. 1A). These factors may be heavily skewing the results 
resulting in a non-representative sample. This bias could contribute to the data that contradicts 
the current literature.  

A portion of microbial gut species differs between obese and non-obese individuals. Core 
microbiome analysis revealed that 35% of the pooled collection of the core microbiome 
species were associated with either “obese” or “non-obese” individuals (Fig. 1B). This 
implies that gut microbial composition may be changing based on obesity status. Indicator 
species analysis revealed significantly higher association of certain bacterial groups with 
non–obese individuals. For instance, one of the bacterial familiess associated with non-obese 
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individuals is Rikenellaceae. Rikenellaceae has been previously found in literature to be 
associated with reduced adipose tissue in non-obese individuals (29). Notably, in contrast to 
the previous analysis where not all results were found to be consistent with WEIRD 
populations, in this portion of analysis, all trends observed were consistent with literature on 
WEIRD populations.  

Model selection showed that obesity metrics do not play a large role in the variation of 
microbial diversity and composition. The final Shannon-diversity model included “Body Fat 
Percentage”, which did not significantly affect microbial diversity. However, it may have 
been included in the final model due to improving the explanatory power of another predictor. 
Further analysis revealed that filtering out “Insulin” and “Medication” causes “Body Fat 
Percentage” to be removed from the final models, suggesting that these predictors share a 
dependent relationship regarding variation in Shannon diversity (Tables S1-S4). Many 
medications, such as insulin, can cause weight gain by influencing the redistribution of body 
fat, leading to an increase in visceral fat accumulation and a decrease in subcutaneous fat 
(30). Insulin also has an impact on appetite, and can cause diabetic patients to increase their 
total caloric intake to compensate for low blood glucose levels (31). There is also positive 
feedback between obesity and insulin insensitivity: visceral fat deposits help build up insulin 
resistance, meaning obesity may lead to requiring higher doses of insulin (32). Higher insulin 
intake and obesity have both independently been linked to lower microbial diversity in the 
gut. However, the relative contribution and interaction between these two health metrics on 
gut microbiome variation have not been well studied (33, 34). Here, we show that these two 
health metrics may interact with each other to alter gut microbiome diversity.  

Although obesity metrics did not have a significant impact on microbial variation, the 
impact of diet-related metrics was more profound. The consumption of more “Animal 
Protein” was an important predictor for both diversity and composition (Tables 3, 4, S1-S4). 
Populations in WEIRD countries that consume a diet rich in animal protein, carbohydrates, 
and fat were found to have lower microbial richness and biodiversity. In contrast, microbial 
richness and biodiversity in non-WEIRD populations, whose diets consist of low amounts of 
fat and animal protein and high levels of plant protein and fiber, was higher (35, 36). 
Microbial composition was also found to differ significantly between non-WEIRD 
populations themselves based on differences in diet (35, 37). Thus, the presence of diet-
related metrics, such as “Animal protein”, appearing in the final alpha and beta models 
outlines the significant impact diet has on microbial variation. Despite this, “Body Fat 
Percentage” appears to be independent of diet, suggesting that obesity does not have a direct 
association with diet in terms of its influence on the microbiome (Table S1). 

Apart from health-related metrics, the non-health related metric “City” is also a strong 
predictor of both alpha and beta-diversity (Tables 3, 4, S1-S4). The alpha diversity model 
showed the cities of Bogota and Medellin to have a significant effect on Shannon diversity. 
Geographic location was previously found to strongly influence microbial diversity , and here 
we show that geographic location may also explain variation in community composition. This 
may be explained by the fact that Bogota and Medellin are the two most highly populated 
cities in Colombia, with populations of 7.4 million and 4 million people, respectively (38, 
39). The higher populations of these cities may give residents more economic influence, 
which could translate to increased access to diverse foods and diets (40). This may result in 
higher gut microbial diversity in individuals living in these locations (41). Additionally, 
higher populated cities are often more polluted (42). This affects the exposure of individuals 
in these cities to the bacterial species found within food supplies (41). Considering how 
Colombians from different cities are exposed to different microbial species, it is possible that 
the composition of their gut microbiomes reflects this difference. 
 
Limitations Two major factors pertaining to the sample set contributed to the limitations of 
this study. Firstly, the dataset does not represent the entire Colombian population, which 
limits the generalizability of our study. Secondly, the absence of non-obese females and the 
greater number of obese samples compared to non-obese may lead to uneven results (Fig. 
1A). Additionally, this was a cross-sectional study, meaning we are unable to infer causality 
between obesity and gut microbial variation. This provides only a snapshot of the dynamics 
between the gut microbiome and the human body. Studies done over a longer time period 
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would be needed to better understand causal links with obesity. Lastly, using only 16S rRNA 
gene sequencing identifies bacterial species and provides an incomplete view of the complex 
human gut microbial community which also includes prokaryotes, eukaryotes, archaea, and 
viruses (5). 
 
Conclusions This study investigated the associations between obesity-related factors with gut 
microbial diversity and composition in a Colombian population. Our results revealed that 
predictors with underlying links to obesity significantly affected microbial diversity and 
composition. While no significant differences in microbial gut composition were observed 
between obese and non-obese individuals, core microbiome analysis revealed that some 
microbial species changed between obese and non-obese individuals. Looking beyond single 
metrics and analyzing combinations of factors with model selection, we found obesity metrics 
were not included in the optimal combination of predictors that explain the variation in 
microbial diversity and composition. Although body fat percentage was included in the final 
alpha diversity model, it was not a significant predictor. However, it was shown that “city” 
may be an important factor in determining alpha and beta diversity of the gut microbiome. 
This may be due to differences in diet and exposure to different microbes in different cities. 
 
Future Directions To better understand the relationship between obesity and gut composition 
in Colombian populations, it is imperative to obtain an unbiased dataset, not only with a larger 
number of non-obese individuals, but also with at least some non-obese females. This ensures 
that observed patterns are a true representation of the population. Additionally, obese 
individuals had 19% of all ASVs that were found to be part of the core microbiome for any 
group (pooled) were uniquely associated with them. For future studies, identifying the 
metabolic pathways of these specific species within the gut environment may provide a 
deeper understanding of the relationship between obesity and gut microbial composition. 
Finally, in addition to our current study, conducting more research on non-WEIRD 
populations, particularly South American populations, is necessary to obtain globally 
generalizable observations on the interplay between obesity and gut variation. 
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