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SUMMARY  Having emerged 600 million years ago, fish represent the largest diversity of 
vertebrates and have adapted exceptionally to continuous changes in the aquatic ecosystems. 
Despite their importance, fish have been significantly underrepresented in microbial ecology 
analyses and little is known about the environmental drivers of the fish gut microbial 
composition. To investigate the relationship between habitat depth and distance from shore 
in driving fish gut microbial composition, we analysed and compared the microbiota of the 
midgut and hindgut of marine fishes. Our study found that water depth and distance from 
shore do interact to drive fish microbial composition in midgut samples, but not in hindgut 
samples. We also found that genera associated with nutrient cycles (Rhodopiruella, 
Desulfotalea, Sva0081, Milano WF1B-44, Woeseia, Sulfurovum, and Massilia) and water 
pollution (Fluviicola, Ulvibacter, Fluviicola, and Rhizobium) can be reflected in the midgut 
microbial composition of marine fish. These findings provide a reference for future studies 
of the gut microbiome of fish as well as insights into the key role of spatial geography of the 
host habitat in influencing gut microbial composition. 
 
 
INTRODUCTION 

espite the growing body of literature investigating the relationship between microbial 
communities and the environmental biomes in different animal hosts, past studies have 

mainly focused on the gut microbiota of mammals [1]. Fish, on the other hand, are relatively 
underrepresented in microbial ecology studies, and little is known regarding how 
anthropogenic (human-originating) activities influence the gut microbiota of fish in aquatic 
environments [2]. Throughout their evolution, fish have developed various physiological 
adaptations and have co-evolved with symbiotic gut microbes to cope with the continuously 
changing conditions in different environments [1]. Therefore, as environmental stressors rise 
due to anthropogenic pollutants, understanding the role of the aquatic habitat on the gut 
microbiota of fish is important for maintaining fish health and biodiversity, both of which 
have significant impacts on crucial industries like aquaculture and commercial fisheries. 
Considering the sensitivity of fish to the presence of contaminants and their ability to uptake 
toxins from within the water body [3], evaluating the environmental drivers of the gut 
microbiota in fish populations may also represent an important step in defining microbial 
biomarkers for water pollution.  

Currently, the gut microbiota in fish is known to be influenced by various biological 
factors such as host phylogeny, age, and diet, as well as environmental factors, such as 
climate, habitat, and geography [4]. For instance, trophic level is known to play a role in 
shaping the gut microbial communities of fish as different symbiotic bacteria aid in the 
acquisition of nutrients from different diets [5]. Previous studies have also demonstrated that 
pelagic zone and water depth can independently affect microbiome diversity [4]. 
Furthermore, the midgut and hindgut of fish are known to have different dominant species 
compared to other body sites (mucus, skin, and gills) [6] in addition to differences in 
microbial communities between the gut sites themselves [7, 8].  Despite these recent advances 
in fish microbial ecology, there appears to be very few studies that have performed a 
comprehensive analysis on the role of host habitat in driving microbial diversity in the fish 
gut. As such, understanding how spatial factors like water depth and distance from shore 
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interact to drive gut microbial composition, especially in fish of a particular trophic level, 
remains a considerably understudied subject in the field of fish microbiology. 

Using the Fish Microbiome Project (FMP) dataset by Minich et al. [4], we sought to 
determine whether habitat depth and distance from shore can interact to drive gut microbial 
diversity of trophic level three (TL3) (secondary consumer) fishes. Previous research on this 
dataset aimed to investigate the primary factors that influence fish microbial communities and 
identified body site to be the strongest predictor of diversity [4].  Habitat depth and distance 
from shore were also shown to independently drive changes in alpha and beta diversity, 
although some of these analyses were selectively performed on smaller subsets of the data 
and focused only on gill samples or only on fishes in the neritic zone [4]. By comparing fish 
samples from three representative habitat regions defined by spatial geography (Figure 1) and  

 
assessing only TL3 fish, we can novelly investigate if there is a relationship between habitat 
depth and distance from shore in driving gut microbial composition, and whether one of these 
factors has a stronger impact on diversity than the other. To address our research questions, 
we conducted diversity and differential abundance analyses and compared results between 
the midgut and hindgut.  

We assessed whether the original correlation holds true when a combination of spatial 
factors are considered within TL3 fish. If these abiotic environmental factors do interact to 
determine TL3 fish microbiota, we would expect to find between habitat regions close to 
shore and in shallow waters and habitat regions far from shore and in deeper waters. We 
further assessed whether these differences in microbial composition are consistent between 
the midgut and hindgut, as previous studies have found that microbial abundance and 
composition differs with body site [4]. Thus, our study will provide evidence on the effects 
of spatial geography on the gut microbial composition of marine fish, as well as identify 
differentially-abundant genera in each host habitat. 

 
 
METHODS AND MATERIALS 

Datasets and metadata. The FMP dataset was generated by Minich et al., wherein the 
microbiota from four primary fish mucosal body sites (gill, skin, midgut, and hindgut) were 
sampled and analyzed for 101 species (28 orders, 55 families, and 83 genera) of marine fishes 
from the Eastern Pacific Ocean in Southern California [4]. DNA extractions were processed 
using the Qiagen PowerMag kit and PCR was performed following the standard Earth 
Microbiome Project (EMP) protocols [9] for the V4 region of the 16S rRNA gene 515F/806 
Rb [10]. Samples were then sequenced using Illumina MiSeq [11] and NovaSeq protocols 
[12]. The associated metadata contained information about several life history metrics such 

FIG. 1 Fish microbial samples 
were categorized by ocean spatial 
geography based on water depth 
and distance from shore. 
Microbial diversity was compared 
between Regions 1, 2, and 3. Region 
1 consists of samples collected from 
shallow waters closer to shore, 
Region 2 (control) consists of 
samples collected from shallow 
waters farther from shore, and 
Region 3 consists of samples 
collected from deeper waters farther 
from shore. This figure was 
generated using Biorender. 
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as diet and trophic level, biometrics, and habitat classifications. Our study focused on fish 
from   TL3 and the metadata categories distance from shore and habitat depth.  
 
Metadata manipulation. Metadata manipulation was performed in R (version 4.2.2) [13] 
using the packages Dplyr (version 1.1.0) and Tidyverse (version 1.3.2) [14, 15]. All data 
manipulation and analyses performed are detailed in the supplemental R script (RScript). Our 
investigation focused on the microbial communities of the gut, therefore samples were filtered 
for TL3 to control for variation associated with diet. Trophic level was assigned by Minich et 
al. using previously documented diet data, in which TL3 was defined as secondary consumers 
[4]. The dataset was then binned by pelagic zone into low depth “intertidal or neritic” (1–
50m), medium depth “mesopelagic or bathypelagic” (150–500m), and high depth 
“abyssopelagic or benthopelagic” (>500m) categories. The dataset was further binned by 
distance from shore with samples falling into either “close to shore,” “medium distance to 
shore,” or “farthest from shore.” The new depth and distance classifications were then 
inputted into a new column in the dataset. Using these metrics, the samples were assigned to 
one of nine habitat regions, defined by their spatial geography. This study compares microbial 
diversity between Regions 1, 2, and 3 host habitats, defined using the water depth and distance 
from shore categories described above (Figure 1). Region 1 contains 67 samples, Region 2 
contains 27 samples, and Region 3 contains 40 samples. 
 
Data processing and phylogeny using the QIIME2 pipeline. All data analyses were 
performed using the Quantitative Insights Into Microbial Ecology (QIIME2) bioinformatics 
pipeline [16] and are detailed in the supplemental QIIME2 script (QIIME2Script). Filtered 
manifest files for the midgut and the hindgut were generated using R [13] and imported back 
into QIIME2 (version 2021.11.0) to generate demultiplexed 16S rRNA sequences [13, 16]. 
The following processing steps were performed in parallel for the midgut and the hindgut 
datasets. Sequence quality control was performed using the QIIME2 plugin Divisive 
Amplicon Denoising Algorithm 2 (q2-DADA2) which detects and corrects sequencing errors 
to allow researchers to resolve microbial communities at the ASV level [17]. A read length 
of 180 nucleotides was retained to maintain a median Phred quality score of 25. Given that 
the median Phred score dropped to 11 at truncation lengths greater than 180 (maximum 
retained bases), 180 nucleotides was the max sequence length retaining sufficient sequence 
quality. After denoising using the DADA2 method, the generated features tables for both 
midgut and hindgut were exported into R for further filtering [17]. To facilitate downstream 
filtering and diversity analyses, the QIIME2 phylogeny tool Multiple Alignment using Fast 
Fourier Transform (MAFFT) [18, 19] was used to perform multiple sequence alignment and 
the FastTree q2-phylogeny plugin [20] was applied to create the corresponding rooted 
phylogenetic tree which was then exported into R. 
 
Taxonomic classification. The q2-feature-classifier plugin was used to train a Naive Bayes 
classifier [21] on the 99% Silva 138 reference database [22] using the same 515F/806R primer 
pair that was used for Illumina sequencing of the original dataset samples. Sequences were 
then truncated to 180 nucleotides to match the length of ASVs generated using DADA2 [17]. 
After the classifier was trained with the new ref-seq file, a taxonomy artifact was generated 
and visualised by the taxa barplot function in QIIME2. Lastly, the taxonomy artifact 
containing taxonomic assignments of the representative sequences was exported for analysis 
in R. This process was performed in parallel for the midgut and hindgut samples.  
 
Features table filtering and ASV rarefaction. The filtered metadata and the imported 
feature table, taxonomy, and rooted phylogenetic tree artifacts for both the midgut and 
hindgut were integrated into their respective phyloseq objects in R [13] using the Phyloseq 
package [23]. The phyloseq object was filtered to exclude low-abundance taxa (<5 reads) and 
samples (<100 reads), and subsetted to include only bacterial ASVs (removed mitochondrial 
and chloroplast DNA). The resulting filtered phyloseq object was used to generate an alpha 
rarefaction curve. Using the rarefaction curve, a sequencing depth of 2000 reads per sample 
was selected to maximize the number of samples and ASVs retained. After rarefaction, 22 
midgut and 18 hindgut samples remained. For the midgut and hindgut, Region 1 contains 11 
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samples and Region 2 contains two samples. Region 3 contains nine samples and 5 samples 
in the midgut and hindgut respectively. 
 
Alpha and beta diversity analysis. R [13] was used to calculate both ɑ-diversity (Chao1 and 
Shannon diversity index) [24, 25] and β-diversity (Bray-Curtis diversity index) [26] using the 
Vegan package [27] for both the midgut and hindgut samples. All data analyses performed 
are detailed in the supplemental R script (RScript). Statistical testing of habitat regions against 
alpha diversity measures was performed using non-parametric Wilcoxon rank-sum test [28]. 
Statistical testing of habitat regions against beta diversity measures was performed using 
PerMANOVA [29]. Alpha and beta diversity plots were generated using the packages ggplot2 
[30] and ggpubr [31] in R.  
 
Differential abundance analysis. Differential abundance analysis was performed in R [13] 
for both the midgut and the hindgut using the raw data and the packages Phyloseq, Tidyverse, 
Vegan, Ape, and DESeq2 [23, 15, 27, 32, 33]. All data analyses performed are detailed in the 
supplemental R script (RScript) and includes analysis of differentially abundant taxa in 
Region 2 compared to Region 1, Region 3 compared to Region 2, and Region 3 compared to 
Region 1. Significance was defined as differentially abundant genera with an adjusted Wald 
Chi-Squared Test p-value of <0.01 [34]. Significant differentially abundant genera were 
plotted using ggplot2 [30]. 
 
Relative abundance analysis. Relative abundance analysis was performed in R [13] for both 
the midgut and hindgut samples using the packages Phyloseq and Tidyverse [23, 15]. 
Significance was defined as differentially abundant genera with an adjusted Wald Chi-
Squared Test p-value of <0.01 [34]. Significant relatively abundant genera were plotted using 
ggplot2 [30]. 
 
Figure formatting. All figures generated by R [13] were reformatted and annotated using 
Microsoft Powerpoint and Word. 
 
Data availability. All samples from the FMP dataset are publicly available at the European 
Nucleotide Archive under project number PRJEB54736 and at Qiita under study ID 13414 
[4]. 
 
RESULTS 

Marine fish exhibit differences in richness and abundance in the midgut based on 
habitat region. To assess the microbial composition of samples across different habitat 
regions, beta diversity analyses were performed on the FMP dataset using the Bray-Curtis 
dissimilarity metric. Midgut samples showed significant separation between Region 1 and 
Region 3 clusters, with samples in the control, Region 2, falling in between those clusters 
(Figure 2A). Region 1 and Region 3 clusters were far apart, indicating that samples collected 
from habitats closest to shore and in shallow waters and habitats farthest from shore and in 
deep water have high levels of dissimilarity (Figure 2A). The samples from Region 2 were 
collected from habitats farthest from shore but in shallow waters, thus the clustering of these 
samples with Region 1 and 3 samples is consistent with Region 2 sharing characteristics of 
the other two habitats (Figure 1). Combined, these trends highlight the robustness of Region 
2 as a control and allows us to parse out the differences in the midgut microbial composition 
that may be driven independently by depth or distance from shore. However, these results are 
not consistent across gut sites as no clustering by region is seen in the hindgut (Figure 2B). 
As the samples significantly differ by habitat region in the midgut (Figure 2A), these results 
suggest that microbial richness and abundance of the midgut, but not the hindgut, is driven 
by habitat region.  

Alpha diversity analyses were also performed using the Chao1 and Shannon diversity 
metrics. No significant differences (p < 0.05) in diversity between the habitat regions or across 
either gut site were observed (Supplemental Figure S2A, S2B).  
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Differentially abundant taxa in the midgut are observed in different habitat regions. 
Differential abundance analysis was performed using DESeq2 to assess differentially 
abundant taxa in the habitat regions. When assessing taxa driven by distance from shore in 
the midgut, Region 1 samples collected from habitats closest to shore showed increased 
abundance in 14 taxa compared to the control, Region 2 samples which were collected from 
habitats farthest from shore (Figure 3A). Moreover, when assessing taxa driven by water 
depth, Region 3 samples collected from habitats in deep waters showed increased abundance 
in 12 genera compared to Region 2 samples collected from habitats in shallow waters (Figure 
3B). Lastly, when assessing taxa driven by both distance from shore and water depth, Region 
3 samples collected from habitats farthest from shore and in deep waters showed decreased 
abundance in 9 genera and increased abundance in 31 genera compared to Region 1 samples 
collected from habitats closest to shore and in shallow waters (Figure 3C). Interestingly, the 
three regions showed stark contrast between their differentially abundant genera, with all 
DESeq2 microbes decreased in Region 2 vs Region 1, and all microbes increased in Region 
3 vs Region 2 (Figure 3A, 3B). Taken together, these findings suggest that differential 
abundance in the midgut is driven by both water depth and distance from shore, leading to 
overall differences in microbial diversity between habitat regions. 
 
DISCUSSION 

There are limited microbial ecology studies that investigate how environmental factors 
influence the gut microbial composition of fish in aquatic environments [4]. This literature 
gap has consequences as the rise of environmental stressors due to anthropogenic activities 
may have adverse effects on the gut microbial composition of fish [2]. Using beta diversity 
analyses and differential abundance testing, we found that water depth and distance from 
shore interact to drive fish microbial composition in midgut samples. Additionally, 
differentially abundant genera associated with nutrient cycling and components of water 
pollution were found in the midgut of marine fish between habitat regions.  

Water depth and distance from shore are demonstrated to be environmental drivers 
of microbial composition in the midgut, but not the hindgut. We investigated the role of 
spatial geography, specifically the interplay of water depth and distance from shore in 
affecting fish gut microbiome diversity. Using beta diversity analyses, we found that only 
midgut samples clustered by habitat regions, suggesting that the microbial composition of the 
midgut is driven by both water depth and distance from shore (Figure 2). This finding is

 

FIG. 2 Fishes in varying habitat regions exhibit differences in richness and abundance of microbial communities in 
the midgut. Principal coordinate analysis (PCoA) plots of the midgut (A) and hindgut (B) microbiota based on Bray-Curtis 
dissimilarity shows significant differences in beta diversity between Regions 1 and 3 in the midgut (p = 0.001), but not in 
the hindgut (p = 0.168). Statistical analysis was determined by permutational multivariate analysis of variance 
(PERMANOVA). Ellipses represent 95% confidence level; Region 2 contains too few samples to be recognized as a group. 
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consistent with the literature as it has been previously documented that the fish gut microbiota 
is influenced by various environmental factors, such as habitat and geography [2]. Depending 
on the level of water depth, habitats vary in the availability of organic matter, nutrients, and 
sunlight exposure, as well as oxygen concentration, and water temperature, which 
subsequently affects microbiota diversity [3,4]. Consequently, deep-sea fishes, particularly 
those with limited vertical migration, would experience different microbial exposures at 
varying depths [2]. Another environmental factor, distance from shore, has also been found 
to determine the nutrient and terrestrial composition of different aquatic habitats. It is likely 
that these changes in the host habitat may correlate with changes in fish microbiomes, as fish 
too are affected by nutrient and terrestrial input [6].  

Interestingly, these patterns of microbial diversity were not seen in the hindgut as our 
alpha and beta diversity analyses both did not show any significant differences in microbial 
abundance or composition according to habitat regions (Figure 2B, Supplementary Figure 
1B). This was not unexpected as the midgut is where the majority of digestion occurs, and 
the hindgut is only for waste excretion [12]. The midgut receives water and food that are 
populated with microorganisms, which subsequently affects the makeup of the resident 
microbiota [11]. The lack of significance in the hindgut may be explained by the low overall 
gamma diversity associated with hindgut samples in fish species and the fact that the hindgut 
was found to have the lowest site specific ASVs compared to other body sites [2]. 
Furthermore, the significant results found in the midgut coincide with the fact that the fish 
gut greatly varies in physicochemical conditions such as oxygen, pH, and organic substrate 
levels, compared to other body sites (mucus, skin, and gills) [11]. Our findings propose that 
the midgut drives variance and suggest that the microbiome of the midgut may be a more 
useful reflection of environmental factors than other gut sites. Our results support our 
hypotheses that gut microbial composition could be influenced by both water depth and 
distance from shore, and that the midgut and hindgut demonstrate differences in microbial 
diversity. 

Differentially abundant genera between regions are associated with their respective 
habitats. To identify differentially abundant taxa between regions, DESeq2 was performed, 
and the genera identified in the midgut of fish were in agreement with the regions they were 
sampled from. For instance, Ulvibacter, Halioblogus, and the NS5 marine group genera were 
enriched in coastal waters and have also been associated with coastal habitats [35–37] (Figure 
3A, C). These groups were less prevalent in Regions 2 or 3 compared to Region 1, indicating 
that they are enriched in coastal habitats. Complementary to this finding, we found that genera 
enriched in deeper waters, Marixanthomonas, Brevundimonas, Alcanivorax, and 
Salinimicrobium, are more associated with deep oceans or seas [38–41]. These expected 
results help to validate our DESeq2 approach. 

Differentially abundant taxa are related to nutrient cycling. Many of the differentially 
abundant genera found in the midgut of fish suggest a role in nutrient cycles, such as sulfur 
oxidation and reduction, and necromass degradation (the recycling of dead microbes). Genera 
associated with sulfate/sulfur reduction, Rhodopiruella, Desulfotalea, and the Sva0081 
sediment group [42–44], were enriched in deeper and farther waters whereas the coastal 
waters were enriched in sulfur oxidizing genera, such as Milano WF1B-44, Woeseia, and 
Sulfurovum [45–47] (Figure 3A–C). This activity alludes to potential roles in the sulfur cycle 
which describes how sulfur is transferred between rocks, sediments, aquatic phases, and the 
atmosphere through various forms [48]. This cycling is mitigated by microbes and helps 
connect different parts of an ecosystem that require different forms of sulfur [48]. Sulfur 
reduction is when oxidized sulfur acts as an electron acceptor to yield H2 or H2S [48]. This is 
generally observed on the ocean floor when organic material settles, which is further 
supported by its increased abundance in Regions 2 and 3 [49].  Conversely, sulfur oxidation 
is when the sulfur compounds are acting as electron donors rather than acceptors [48]. These 
sulfates are usually introduced through run-off from land and support the increased 
abundance of sulfur oxidizing genera in coastal waters. This ties in with another genus that 
was enriched in deeper, farther waters – Massilia (Figure 3C) [50]. This genus is associated 
with necromass degradation and may be interacting with the sulfur reducers as a source of 
oxidized sulfur. As coastal waters may be more affected by run-off based on sheer proximity, 
it would follow that sulfur oxidizers capable of processing sulfates would localize in regions  
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FIG. 3 Differentially abundant taxa are observed in different habitat regions in the midgut. Differentially 
abundant taxa in Region 2 compared to Region 1 (A), Region 3 compared to Region 2 (B), and Region 3 compared 
to Region 1 (C) were assessed by differential abundance analysis using DESeq2/Phyloseq. Significance was 
defined as differentially abundant genera with an adjusted Wald Chi-Squared Test p-value of <0.01. 
 
 



UJEMI Lu et al. 

September 2023   Volume 28: 1-11 Undergraduate Research Article • Not refereed https://jemi.microbiology.ubc.ca/ 8 

with more sulfate. Together, being able to see a visual representation of the sulfur cycle 
through the fish midgut microbiota with prior understanding of the sulfur cycle, yields 
implications for future studies on nutrient cycling potentially using midgut microbial diversity 
as a readout. For instance, recent research has suggested that sulfur is a major evolutionary 
and ecological factor in determining microbial life on marine seafloors, and thus, 
understanding these trends can provide insight on how sulfur sustains specific niches and how 
these may be affected with changes in nutrient cycling.  

Differentially abundant taxa have implications for water pollution. Water pollution 
has many adverse effects ranging from disrupting aquatic ecosystems, to spreading water-
borne diseases for both humans and fish [51, 52]. Therefore, it is important to understand the 
spread of water pollution and the sources of water pollution. Differentially abundant genera 
between different regions found in the midgut of fish are associated with different 
components of water pollution, such as microplastics, wastewater, sewage, and minerals 
(Figure 3A–C). Fluviicola and Ulvibacter are genera that have been isolated from sewage and 
wastewater and were enriched in coastal waters (Figure 3A, C) [37,53]. Wastewater and 
sewage can be introduced indirectly through run-off, when groundwater flow carries waste 
that has leached into the soil into the water [54]. This is further supported by the NS5 marine 
group [36] which is enriched with Fluviicola [53] and is associated with eutrophication 
(Figure 3B, C). Similarly to wastewater contamination, eutrophication is excessive richness 
of minerals and nutrients in water and is introduced by run-off. Together, these results support 
that run-off water pollution is indeed present in the ocean, but more significantly, these results 
suggest that the effects of run-off become diluted with distance from shore. Therefore, when 
trying to mitigate run-off water pollution, efforts may be better spent on cleaning coastal 
waters.  

However, this may not be extrapolated to other forms of water pollution. Rhizobium were 
found enriched in deeper and farther waters (Figure 3C) and have been associated with 
microplastics [55]. This further exemplifies the impact of microplastics on the environment 
as these results suggest that they are present even in the deepest parts of the ocean. This trend 
is opposite to the run-off water pollution suggesting that different forms of water pollution 
need to be addressed differently as they do not behave the same, and, at large, water pollution 
is found in the ocean regardless of distance and depth from shore. Water pollution has many 
adverse effects on ecosystems and human health, and these results further support that efforts 
for mitigating water pollution should be prioritised. These efforts could be supported by 
monitoring the relative abundance of species associated with different types of pollution, as 
it may be difficult to isolate microplastics from the seafloor in a representative manner. 

 
Limitations A main limitation of this study was that the samples were low biomass samples, 
which resulted in many samples returning too few reads for useful analysis after denoising. 
After filtering and rarifying the data, only 22 midgut samples remained for beta diversity 
analysis. This significant loss in the amount of reads reduces representation within our data. 
Moreover, this study only focuses on TL3 fish. Since trophic level alone can highly influence 
the diversity in fish microbial communities [2], the results from this study may not be 
representative of all marine fish. The impact of other confounding variables, such as habitat 
substrates, effects of evolutionary distance, and host phylogeny were also not accounted for 
in this study. 
 
 
Conclusions This study aimed to assess the influence of ocean spatial geography on the gut 
microbial composition of marine fish. Marine fish exhibited differences in richness and 
abundance in the midgut based on habitat region, suggesting that water depth and distance 
from shore interacts to drive fish microbial composition in the midgut. Additionally, marine 
fish from different habitat regions showed differentially abundant genera associated with 
nutrient cycling and components of water pollution in the midgut. Observed farther from 
shore include more sulfur-reducing bacteria, less sulfur-oxidizing bacteria, and less bacteria 
associated with wastewater, sewage, and excessive mineral deposition. This suggests that 
differentially abundant genera associated with nutrient cycling and water pollution are 
reflected in the midgut microbial composition of marine fish.  In contrast, the hindgut showed 
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no significant differences in beta diversity and few differentially abundant taxa between 
habitat regions. While our study provides evidence on the influence of spatial geography on 
the fish gut microbial composition, further studies need to be conducted to explore the 
potential impacts of environmental pollutants on the fish microbiome. 
 
Future Directions To address the limitations in this study, future research could replicate 
this study but with a larger, more complete dataset with higher quality reads. This would 
result in a larger sample size for producing more statistically significant and accurate results. 
Additionally, future studies could investigate the dominant differentially abundant taxa at the 
species level rather than the genus and family level. This could improve the specificity of the 
results and possibly bring to light some important species-specific information that was not 
uncovered in our study. Furthermore, future directions could also evaluate other trophic levels 
to assess the similarities and differences in the midgut microbial composition between 
different trophic level fish. Since different trophic levels are associated with variations in diet 
and the gut microbiomes aid in the digestion of food, fish of different trophic levels could 
presumably have varying microbial compositions [4]. Performing further analyses could also 
provide us with more valuable information to support our findings. For example, indicator 
taxa analysis could determine unique indicator taxa associated with the different habitat 
regions, such that the presence or absence of certain taxa reflects a specific environmental 
condition. Additionally, Phylogenetic Investigation of Communities by Reconstruction of 
Unobserved States (PICRUSt) could be performed to predict metagenome functional 
abundance.  

Another future direction could be to monitor the fish midgut microbial composition long-
term to investigate whether the differentially abundant genera associated with pollution in our 
study would continue to increase or decrease in abundance over time. In particular, it would 
be interesting to assess the change in abundance of these unique taxa post-exposure to certain 
pollutants, such as an oil spill, to investigate microbiome recovery after a polluting event. 
Although fish are generally one of the most important aquatic communities concerning 
humans, the overexploitation of water resources for human developmental activities has led 
to increasing levels of pollutants resulting in harmful effects on fish [3]. Monitoring the fish 
midgut microbiome over time would be important in evaluating the impact of water pollution 
on fish, identifying the presence of toxins in aquatic ecosystems, and investigating recovery 
of the gut microbiome after a polluting event. 
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