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SUMMARY  The gut microbiome in fish aids in nutrient distribution by mediating the 
breakdown of food, nutrient absorption, energy homeostasis and waste excretion. The 
composition of the gut microbiome is largely influenced by the location of the fish as prey 
consumption and nutrient availability differs from the coast to the open and deep ocean 
regions. However, there are limited large-scale studies exploring how the gut microbiome 
differs across ocean regions, and the functional involvement of the microbiome from an 
inferred metagenomic perspective. Using a dataset of 101 fish species, we investigated the 
effects of spatial region habitat on the internal and external fish microbiome. We found that 
spatial region is a driver of internal organ, but not external organ diversity. Only open ocean 
internal samples contain a core microbiome of six taxa, including representatives from the 
genera: Synechococcus CC9902, Psychromonas, Acinetobacter, and Sva0081 Sediment 
Group. We also identified differing abundances of metabolic pathways between the samples, 
including pathways involved in xenobiotic detoxification, glycosaminoglycan degradation, 
ABC transporters, and the renin-angiotensin system. Our findings demonstrate that spatial 
region is a driver of fish gut microbial diversity, composition, and functionality. 
 
 
INTRODUCTION 

he fish microbiome plays an extensive role in maintaining fish health and digestion. 
The external organ fish microbiome (skin and gill) consists of a complex pattern of 

gene expression that maintains the epithelial barrier and appropriate innate immune responses 
to protect the host (1, 2). Mucus present on skin and gill surfaces are colonised by a highly 
diverse commensal microbial community (3). The microbiome limits the colonisation of 
pathogenic microorganisms and prevents disease development by competitive exclusion, 
releasing compounds that impede the growth of pathogenic microorganisms, facilitating 
waste excretion, and mucus homeostasis (2). Moreover, the gut microbiome influences 
digestion and absorption of nutrients, as well as nutrient distribution and energy homeostasis 
(4). Thus, there is an important relationship between the fish microbiome and the host that 
will likely differ depending on the fish’s habitat.  

Some factors that have been previously described in the literature as drivers of both gut 
and external organ microbiome diversity in fish are water quality, disease, and diet. The focus 
in current research efforts has largely been on the taxonomic diversity across different fish 
species and their body surfaces (5). However, there is little research on the functional 
involvement of the microbiome from a metabolomic perspective (5). Research in Hadal 
snailfish, which inhabit depths between 6,000 to 8,000 m, has shown that the gut microbiome 
consists primarily of piezophiles, which are highly adapted to growth under high hydrostatic 
pressure. They also found genera including Psychromonas, Moritella, and Shewanella 
associated with snailfish and hypothesised they contribute to chitin degradation and fatty acid 
production (6). Thus, the fish microbiome is likely different depending on which part of the 
ocean the fish is located in as the microbial species would be adapted to different nutrient 
sources and environmental conditions relevant to that ocean region. 

Minich et al. sampled the microbiome of gill, skin, midgut, and hindgut of 101 species of 
fish prevalent at various habitat depths. They compared the alpha diversity of samples from 
each body site and looked at other predictors including habitat depth, collection substrate, 
dorsal length, fish mass, and swim modes (7). Their study found that the midgut had the 
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highest diversity while the gills had the lowest diversity (7). They also compared the beta 
diversity of the fish microbiome of different body samples and found that sample type, habitat 
depth, and substrata group were strong predictors of beta diversity (7). Since their dataset 
includes body part samples from different ocean regions, there is an opportunity to investigate 
how these two factors interact and drive differences in fish microbiota.  

We will expand on their findings by grouping fish based on their natural habitat of either 
coastal or open oceans to examine how the fish microbiome compares when living near the 
coast and in the open. The microbiome samples will also be grouped into external or internal 
organ samples to look for general trends, rather than comparing each anatomical region 
separately. Based on previous findings, we hypothesise that microbial diversity will differ 
between the two anatomical locations and spatial regions, respectively. Additionally, ocean 
salinity is variably distributed horizontally and vertically, and studies have shown that it plays 
a role in shaping the fish gut microbiome (8). Knowing that oceanic regions have 
heterogeneous salinities that impact marine species distribution and thus ecology, we can 
hypothesise that the external and internal anatomical fish microbiomes will differ between 
ocean spatial regions. Since different adaptations allow fish to survive in a particular habitat, 
we hypothesise that open ocean microbiomes will express more genes that allow the microbes 
to survive in high pressures, extreme temperatures, unique gas composition, and limited 
nutrients of the open ocean (9).  

 
 
METHODS AND MATERIALS 

Fish Microbiome Project Dataset. The dataset consists of one gill, skin, midgut, and hindgut 
samples from a single fish from each of 101 fish species collected near San Diego County, 
California, USA (7). Skin samples were composed of scraped mucus. Midgut and hindgut 
samples were digesta material located at the end of the stomach or at the anus, respectively. 
Gill samples were composed of either the entire gill or three cuts from the top, middle, and 
bottom of the gill arch if the gill sample was too large. Depending on the vertical range that 
the fishes inhabit, habitat depth was categorised as intertidal (0-10 m), neritic (0-200 m), 
mesopelagic (200-1000m), mesopelagic/benthopelagic (largely demersal at 200-1000m), 
bathypelagic (1000-4000 m) or abyssopelagic ( >4000m). Further information on the sample 
collection and creation of the metadata can be found in the original paper by Minich et al. (7). 
This dataset is publicly available at the European Nucleotide Archive (project number: 
PRJEB54736) and on Qiita (Qiita ID: 13414). 
 
Preliminary Metadata Filtering and Binning. Metadata processing prior to downstream 
analysis was performed using the tidyr and dplyr packages in R (Version 4.2.3) with RStudio 
(Version 2023.03.0) (10–12). Rows containing “NA” or “not applicable” values were first 
filtered out, reducing the number of samples from 651 to 412. The sample type column 
(sample_type) was binned into the first new column (anatomical_location) as either 
“external”, consisting of skin and gill samples, or “internal”, consisting of midgut and hindgut 
samples. The fish habitat column (habitat_depth_level3) was binned into a second new 
column (spatial region) as either “coastal”, consisting of neritic and intertidal fish samples, 
or “open ocean”, consisting of the rest. Finally, a third new column (anat_space_combine) 
was created by combining the values for the first and second new columns. For further 
QIIME2 analysis, the manifest file was updated to match samples in filtered metadata. 
 
QIIME2 Sequence Preparation and Export. Sequence data was imported into QIIME2 as 
single end sequences (13). The DADA2 QIIME2 tool was then used to denoise and apply 
quality control to sequences, truncating reads to a length of 189 base pairs (14). Potential 
mitochondrial and chloroplast sequences were filtered out of the data using QIIME2’s taxa 
filter table command, and amplicon sequence variants (ASVs) with less than 50 total counts 
were removed. Samples with less than 10 ASVs were also filtered out. Remaining ASVs were 
assigned taxonomy using the SILVA 138 SSU Ref NR 99 database, re-trained with the 
primers (Forward: GTGYCAGCMGCCGCGGTAA, Reverse: 
GGACTACNVGGGTWTCTAAT) used in the study (15, 16).  A rooted phylogeny tree was 
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built with FastTree following the alignment of representative sequences with MAFFT using 
the QIIME2 align-to-tree-mafft-fasttree command (17, 18). Finally, a rarefaction depth of 
1552 was selected based on alpha rarefaction plots. Upon filtering the data, the metadata file, 
ASV table, rooted phylogeny tree, and taxonomy table were then imported to R to be 
converted to a phyloseq object using the phyloseq package (19). 
 
Diversity Analyses. Alpha diversity of the spatial region and anatomical location categories 
was assessed by generating Shannon-Wiener index plots in R, using the phyloseq object and 
ggplot2 and phyloseq packages (20–22). The Wilcoxon rank sum test was performed to test 
for significance using the ggpubr package (23). The phyloseq package was used in R to 
estimate beta diversity using Weighted UniFrac distances calculated on the phyloseq object. 
PCoA was then calculated and plotted using the phyloseq and ggplot2 packages. To test for 
significance, the vegan package was used to perform PERMANOVAs (24).  
 
Core microbiome analysis. Core microbiome analysis was performed using the microbiome 
package and tidyverse package in R (25, 26). Core microbiome was calculated using a 
prevalence threshold of 0.5 and detection threshold of 0.01, and visualised as a venn diagram 
using the ggVennDiagram package (27). 
 
DESeq2. Differential taxa abundance analysis between open ocean internal and coastal 
internal samples was performed using the DESeq2 package and tidyverse package, with one 
added to the ASV table, and visualised as a log2-fold change barplot with the ggplot2 package 
in R (21, 25, 28). 
 
PICRUSt2 Functional Prediction. Functional abundances were predicted for representative 
ASV sequences using tools wrapped within the PICRUSt2 software (29). HMMER and SEPP 
tools optimally placed ASVs into a phylogeny tree based on sequence similarity to reference 
16S sequences. SEPP was used as a low-memory alternative to EPA-ng, outputting a tree 
with incorporated ASVs (30). The castor R package was applied to the tree to infer genomic 
content of sample sequences, predicting Kegg Ortholog (KO) abundances for each ASV (31). 
Edge lengths were set to 0 such that they did not influence predictions. Finally, the 
metagenomes of each sample were predicted. 
 
Pathway Inference and Differential Expression Analysis. Predicted metagenome data was 
imported into R and downstream analysis were conducted using the ggpicrust2 package (32). 
Pathway abundances were first inferred by converting KO abundances to KEGG pathway 
abundances. KEGG pathway abundance and metadata were then filtered such that samples 
aligned prior to differential expression analysis with the limma voom tool (33–35). Limma 
voom was chosen to determine if microbial communities in open ocean samples differed 
functionally from coastal communities as it allows for powerful analyses of RNA-seq data by 
providing strict false discovery rate control. Subsequent results were filtered for the 30 lowest 
Benjamin-Hochberg adjusted p-values, and annotated by connecting to the online KEGG 
database (36–38).  Results were visualised in a grouped bar chart. To exclusively compare 
internal samples across oceanic spatial regions, the metadata was subsetted for internal 
samples only.  
 
Code Availability. All R (version 4.2.3) code is available at: 
https://github.com/jochennn/micb475_project2 
 
RESULTS 

Only open ocean internal microbiomes show significantly greater diversity. Alpha 
diversity metrics on anatomical sample location and spatial region was conducted using the 
Shannon diversity index. Internal and open ocean samples were more diverse than external 
(p = 0.0074, Wilcoxon Rank Sum test) and coastal samples (p = 0.0012, Wilcoxon Rank Sum 
test), respectively (Figure 1A & B). To identify potential interactions between categories, we 
faceted the anatomical location graph with spatial region, and vice versa. In the anatomical  



UJEMI Chen et al. 

September 2023   Volume 28: 1-12 Undergraduate Research Article • Not refereed https://jemi.microbiology.ubc.ca/ 4 

 

 
 

location graph faceted by spatial region, we see no statistically significant differences in alpha 
diversity when comparing coastal or open ocean samples with internal and external samples 
(p = 0.084; p = 0.067, Wilcoxon Rank Sum test) (Figure S1). However, when faceting the 
spatial region graph by anatomical location, open ocean samples were more diverse than 
coastal samples for internal samples (p = 0.0012, Wilcoxon Rank Sum test) (Figure 1C). 
External sample diversity did not change between spatial regions. To examine whether 
anatomical location or spatial region are predictors of microbial community composition, we 
calculated beta diversity using Weighted UniFrac distances. We observed clustering of 
anatomical samples into 2 clusters, external and internal samples, while no clustering was 
observed for spatial region (p = 0.030; p = 0.138, PERMANOVA) (Figure S2A). To assess 
whether patterns existed on finer resolutions, we repeated the analysis using the original 

FIG. 1 Open ocean and internal microbiomes have higher alpha diversity. (A) Internal samples had 
significantly higher Shannon diversity compared to external samples (P = 0.0074, Wilcoxon Rank Sum test). 
(B) Open ocean samples had significantly higher Shannon diversity compared to coastal samples (P = 0.0012, 
Wilcoxon Rank Sum test). (C) Only internal samples had significant differences in alpha diversity between the 
coastal and open ocean regions. Asterisks indicate significant differences between sample categories calculated 
with Wilcoxson rank sum tests with Bonferroni correction. *P < 0.05, Padjusted < 0.013. 
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sample type and habitat depth levels as predictors, which included gill, skin, midgut, and 
hindgut for different sample types from the intertidal, neritic, abyssalpelagic, 
meso/benthopelagic and bathypelagic regions (Figure S2B). We found that anatomical 
location (pseudo-F = 2.7509, p = 0.030) and its strata (pseudo-F = 2.6302, p = 0.007) were 
strong predictors while spatial region (pseudo-F = 1.7049, p = 0.138) and its strata (pseudo-
F = 1.6112,  p = 0.095) were not (Figure S2C). Overall, while the open ocean internal samples 
were more diverse, there was no significant difference in microbial community composition 
between open ocean and coastal samples. 

A small core microbiome is associated with open ocean internal samples. Next, to 
further characterise the differences between open ocean external, open ocean internal, coastal 
external, and coastal internal groups, we decided to see how the composition between coastal 
and open ocean internal microbiomes differ. We filtered samples to include core members 
only, which we defined as having a prevalence of at least 0.5 and a detection threshold of 
0.01, and saw no core microbiome for the coastal internal samples. However, we identified a 
small core microbiome for the open ocean internal group, which consisted of six taxa (Figure 
2). Four of the six taxa belonged to the genera: Synechococcus CC9902, Psychromonas, 
Acinetobacter, and Sva0081 Sediment Group. Using DESeq2, we then confirmed that 
Psychromonas, Acinetobacter, and the Sva0081 Sediment Group were differentially abundant 
between open ocean internal and coastal internal groups (Figure S3), validating the results 
from the core microbiome analysis. 
 

 

Significantly enriched catabolic and anabolic pathways are primarily found in the 
internal fish microbiome. To further understand how microbial communities differ between 
anatomical regions, we identified differences in the abundance of metabolic pathways to infer 
functional differences. Using the ggpicrust2 package in R, we converted KO abundances, 
inferred with PICRUSt2, to KEGG pathway abundances. Upon conducting a limma voom 
differential expression analysis, we found statistically significant differences in relative 
pathway abundances between the external and internal fish microbiomes in our study. We 
decided to focus only on the 30 pathways with the lowest Benjamin-Hochberg adjusted p-
values, which were all significantly different, and found catabolic and anabolic pathways to 

FIG. 2 Six taxa associated with the open ocean internal core microbiome. Four taxa in the open ocean internal 
microbiome are resolved to the genus level: Psychromonas, Acinetobacter, and Sva0081 Sediment Group, with 
one shared taxon: Synechococcus CC9902, part of both the open ocean internal and external core microbiomes. 
No core microbiome of the coastal samples was seen. Prevalence threshold of 0.5 and detection threshold of 0.01. 
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be primarily enriched in the internal microbial community (Figure 3A). Of the metabolic 
pathways retained, it was interesting to note that the glycosaminoglycan degradation and 
amino sugar and nucleotide sugar metabolism pathways were enriched in the external 
microbial community relative to the internal microbial community (Figure 3A).  

ABC transporter pathway significantly enriched in the internal microbiome of 
coastal fish compared to open ocean fish.  Lastly, we wanted to examine whether the 
internal microbiome of open ocean fish was functionally different from that of coastal fish. 
Once again, we performed a limma voom differential expression analysis on KEGG pathway 
abundances, this time for internal samples only. Of the top 30 KEGG pathways with the 
lowest adjusted p-values, we only observed the ABC transporter pathway to have marginally 
higher relative abundance in the internal coastal microbial community, while the rest showed 
increased relative abundance in the open ocean microbiome (Figure 3B).  

 

 

FIG. 3 Significant differences 
present in relative pathway 
abundances when comparing 
external and internal fish 
microbial communities, and in 
spatially distinct internal fish 
microbiome samples. Limma 
voom differential expression 
analysis shows log2 fold-change of 
relative abundance for KEGG 
pathways with 30 lowest Benjamin-
Hochberg adjusted p-values. (A) 
Catabolic and anabolic pathways 
were primarily decreased in external 
microbial communities in 
comparison to internal 
communities. (B) For internal 
microbiome comparisons across 
oceanic spatial regions, the open 
ocean internal samples acted as a 
baseline. Examination of the 
grouped bar chart revealed that the 
ABC transporter pathway was 
decreased in the internal 
microbiome of coastal fish. All 
pathways shown above are 
significantly different between the 
compared groups. *P<0.05 
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DISCUSSION 

This study expands upon previous research by Minich et al. to elucidate the differences 
between microbiomes in coastal fish species versus offshore fish species. In assessing 
diversity, core taxa, as well as potential functional differences between taxa, between the 
internal microbiomes of open ocean and coastal fish, we found that only internal microbiota 
differed between open ocean and coastal fish. In spite of combining water column depth 
levels, we saw a trend of differing diversities between anatomical sites sampled, but not 
between the spatial regions the fish were caught at, highlighting a potential area of further 
research in microbiomes shared across fish species with different lifestyles. 

We first validated whether our binning method, which reduced anatomical location to 
inner and outer fish, yielded similar results as the preliminary study by Minich et al. (7). 
Minich et al. found that midgut samples had the highest diversity across several metrics, 
relative to gill, skin, and hindgut (7). We also observed greater alpha diversity in internal 
samples, which includes midgut samples, when comparing with external samples. The high 
alpha diversity in internal samples is corroborated by other studies, which describe the fish 
gut as highly dense in bacteria involved in fish development, nutrition, and disease 
prevention, in contrast to surrounding water (39, 40). 

We also looked at how spatial regions affected alpha diversity and found that open ocean 
samples had higher alpha diversity compared to coastal samples, and that this pattern was 
driven by patterns in internal fish samples only, and not external. Specifically, internal open 
ocean samples had higher microbial richness than internal coastal samples, suggesting that, 
internal samples are sensitive to changes in spatial region. This observation is congruent with 
findings from Kim et al. who found that host habitat was a major determinant of the gut 
microbiome composition in fish (41). The researchers looked at how alpha diversity differed 
in fish from lakes, streams, and seas, all of which differ drastically in environmental 
conditions, including salinity, temperature, depth, and nutrient availability (41). They found 
that freshwater fish had significantly higher Shannon index and Observed Species (non-
phylogenetic diversity) values compared to seawater fish, but Faith’s phylogenetic diversity 
was comparable (41). Kim et al posited that these patterns were due to host adaptation to the 
environment, as the lack of cofactors and vitamins in freshwater habitats has been shown to 
promote the prevalence of diverse microbes involved in the metabolism of those nutrients 
(41). Since coastal waters are more proximal to river run-off, we might expect the internal 
coastal fish gut samples to have higher microbial richness compared to internal open ocean 
samples due to a reduction in water salinity (42). Further research needs to be done to 
investigate the reasons for differential fish internal microbial diversity, and to elucidate why 
external samples do not appear to have differences between the regions.  

After conducting core microbiome analysis, we found four taxa unique to open ocean 
internal samples, that resolved to the genus level and were of interest. For example, 
Psychromonas was found in the open ocean internal samples and is a genus with chitin 
degradation capabilities (6). Due to chitin being a common polysaccharide component of 
marine crustacean shells, it may have a role in fish digestion. However, whether this genus 
has an active function in the fish gut has yet to be determined. Acinetobacter was shown to 
be a strong indicator species (data not shown) and the most differentially abundant taxon in 
DESeq2 of the open ocean internal, as well as part of the core microbiome. Acinetobacter is 
a very diverse genus of bacteria, ranging from human and fish pathogens to commensal 
organisms in the soil and water. We cannot be certain of its role in the fish gut as roles differ 
between Acinetobacter species (43). Finally, we see a Sva0081 Sediment Group, a genus of 
anaerobic sulphate reducing bacteria. When running indicator species analysis, we saw that 
it is an indicator species for both open ocean internal and external categories. Previously, the 
genus has been shown to have high abundance in sediments but here they have also been 
observed inside fish (44, 45). However, future studies would need to be performed to see if 
they are active in the fish gut or skin, or ingested. Additionally, there was one taxon shared 
between both the open ocean internal and external core microbiomes. Synechococcus 
CC9902, an abundant cyanobacteria. Most blooms of Synechococcus occur close to the coast 
(46). However, when stratifying the data, we saw that it was present in skin and gut samples 
of a variety of water column strata, including both coastal and open ocean categories. 
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Synechococcus CC9902 has been shown to alter fish behaviour, and major blooms have been 
observed off the coast of California, where many of the fish samples for our dataset were 
taken (46). Interestingly, we did not see the Synechococcus CC9902 as differentially abundant 
in DESeq2 or an indicator species. 

Although Minich et al. identified that body site differences were the primary contributor 
to microbial community composition, they did not determine the specific pathways that were 
differentially abundant between the microbiomes in fish external anatomy and fish internal 
anatomy. Here we found that pathways associated with catabolism and anabolism were 
primarily enriched in the internal fish microbiome, and this included pathways involved in 
amino acid metabolism, as well as styrene, benzoate, and caprolactam degradation pathways. 
Succinctly, many of the pathways that were enriched in the internal community were 
associated with dietary processing or serve roles in xenobiotic detoxification and degradation, 
which is commonly performed by the gut microbiome (47, 48). The few metabolic pathways 
found to be enriched in the external microbiome included the glycosaminoglycan degradation 
and amino sugar and nucleotide sugar metabolism pathways. The glycosaminoglycan 
degradation pathway is known to be a mechanism present in gill microbiota that aids in salt 
water acclimation and osmoregulation (49). Accordingly, the amino sugar and nucleotide 
sugar metabolism pathway has also been shown to facilitate osmoregulation, where it is 
upregulated in the gill upon salinity transfer (50). This can explain the enrichment we see in 
the external community. Taken together, our findings corroborate the observations made by 
Minich et al., which indicate that conserved aspects of body sites favour certain microbial 
communities.  

Continuing with our exploration of differences across spatially segregated internal fish 
microbial communities, we performed an additional pathway prediction functional analysis. 
We observed that the ABC transporter pathway was the only pathway significantly enriched 
in the coastal internal community relative to the open ocean internal microbial community. 
While this pathway is involved in osmotic homeostasis and nutrient uptake, both of which are 
essential in prokaryotic species, the enrichment that we see in the internal coastal microbiome 
is likely due to the need for increased xenotoxin resistance and removal (51). As pollutant 
concentrations have been shown to be the highest in coastal waters, microbes present in these 
areas fittingly need more ABC transporters to expel foreign substances they encounter (52).  

Other patterns observed in differentially abundant pathways corroborated previous work. 
Particularly, the streptomycin biosynthesis pathway was found to be enriched in open ocean 
internal samples. This supports literature showing that microbiomes of animals fed zinc 
restricted diets exhibited increased streptomycin biosynthesis (53). Considering that zinc 
concentrations are lower in the ocean as opposed to coastal waters, we might expect to see 
this pathway enriched in the open ocean (54). The renin-angiotensin system was another 
pathway that showed enrichment in the open ocean internal microbiome. This system 
performs functions associated with osmoregularity and saltwater acclimation to accommodate 
shifts in osmolality (55). Although this pathway has only been shown to be reduced in the gut 
microbiota of fish transferred from saltwater to freshwater, it is plausible that fish gut 
microbes present in oceanic regions of less salt concentration could exhibit a decreased 
abundance of the pathway (55). Taking into account that most of our samples were obtained 
off the coast of California, the differences in relative abundances of this pathway could 
therefore be attributed to the lesser salt concentrations of the waters along the west coast of 
North America in comparison to the open ocean (56).  

 
Limitations There are some concerns with treating the open ocean as a single spatial region 
(57). With greater water column stratification offshore than coastal waters, the reduced 
mixing events occurring in deep waters may lead to differences in fish diets and lifestyles at 
different water column depths. However, when analysing the unbinned data (original water 
column strata), we saw similar results to when combining them. We hypothesise that since 
open water fish species are known to migrate vertically through the water column on a diurnal 
basis, there may be a high degree of homogeneity in microbiomes between the different 
depths (43).  

Further, we found that differences in microbial diversity between groups was reduced 
when binning sample types together into anatomical locations, suggesting that the midgut and 
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hindgut samples, as well as skin and gill samples, are different from each other (Figure S1C), 
with a stronger difference than between open ocean and coastal fish. These results would 
match findings from Minich et al. where they found that the beta diversity of the hindgut and 
midgut of fish differed as fish increased in trophic level (7).  

When looking at the taxa present, we were only able to resolve to the genus level. Many 
taxa are likely unstudied and uncharacterised. There are also likely various species under the 
same genus, such as within Acinetobacter, that were identified as core microbes in the open 
ocean internal microbiome but had different functions and niches (43). While the genus may 
be considered part of the core microbiome, if resolved to the species level, we may see 
otherwise. As well, when using 16S data, we are examining the microbes that are present and 
are unable to determine whether they are alive or dead, which limits our ability to draw 
conclusions about the ecological roles of taxa in the microbiome. 

Similar limitations apply to the metabolic data from the PICRUSt2 analysis. It is 
important to note that PICRUSt2 only infers the gene family and pathway abundances from 
16S sequences, and while this may be useful in forming hypotheses for future studies, the 
presence of such pathways and their ecological roles cannot be confirmed. As well, taxa in a 
microbiome does not always maintain the same functional microbiome as previous studies 
have shown (58). Predictions from the analysis are limited by the way our study sequences 
get placed in the reference tree. In other words, the process isn’t entirely reproducible, as 
placement of the sequences are dependent on each other and whether or not they are based on 
single ASVs or functions. One important limitation of PICRUSt2 is that the reference genome 
we used may not fully represent the 16S sequences of microbes in the fish of Southern 
California coastal and oceanic waters, resulting in poor predictions of pathways.  
 
Conclusions This study finds that spatial region is a driver of fish gut microbial diversity, 
composition, and functionality. Compared to coastal fish internal microbiomes, this study 
identifies how fish across a diverse range of species comprising the open ocean region share 
a small core microbiome and yet are more diverse than coastal fish microbiomes. 
Additionally, looking at inferred metagenomic data, we find novel differences between the 
metagenomic content in internal microbiomes of coastal and open ocean fish. Patterns found 
in our study can guide future studies in characterising the importance of the fish microbiome 
in fish health, and help lead fish management strategies and conservation efforts. 
 
Future Directions To further explore how spatial regions impact microbial diversity, 
separating the spatial regions into their individual strata will give a more nuanced picture on 
how depth levels affect diversity. It may identify water depths that have particular 
environmental factors that influence fish microbiota, which may inform ocean preservation 
strategies. The balance of the gut microbial community is sensitive to factors like nutritional 
status, stress, antibiotics, and infection (39). While our study provides a snapshot of the level 
of diversity currently in Southern California, it will be important to monitor this population 
to potentially identify the effects of ocean pollution in the area, especially after having found 
metabolic pathways involved in xenobiotic detoxification, which serves as an environmental 
warning sign. The coast of Southern California was heavily used in the last century as a 
dumping ground for chemical waste, including dichlorodiphenyltrichloroethane (DDT), a 
now banned pesticide which remains on the ocean floor in dangerously high concentrations 
(59). Understanding how pollution and environmental changes affect diversity over time 
would help give us a better idea of how fish microbiomes are affected by said changes. 
Learning the warning indicators for concerning environmental changes can help prompt 
conservation efforts.  

Additional studies that look at more fish species and an increased sampling size of more 
than one fish per species would allow for stronger characterization of microbiome differences 
between open ocean and coastal as well as internal and external microbiomes. This will help 
to confirm and increase confidence in our findings. A very specific scope that would be of 
interest to investigate is to target specific species that are found between water column 
regions, to further characterise a wider range of fish that are more migratory between habitat 
regions and perhaps allow for more stringent thresholds for core microbiome analysis. To 
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parallel our study, investigation of the metagenomics of the new dataset can help confirm our 
picrust analysis.  

Finally, it will be meaningful to conduct a deeper dive on the specific taxa revealed to be 
core microbes in the different ocean habitats and determine whether they actually have an 
active function in the fish gut microbiome. It is unclear if the microbes we identified were 
alive and actively making significant contributions to metabolic processes in the fish gut. 
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