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SUMMARY   Familial dysautonomia (FD) is the most prevalent type of Hereditary Sensory 
and Autonomic Neuropathies, which are rare genetic neurological disorders that affect both 
the peripheral and central nervous systems. Previous studies have found significant alterations 
in the gut microbiome and metabolome in FD patients compared to healthy individuals. 
However, it is unclear how gut microbial composition differs with varying levels of FD 
severity. Here, we aim to investigate whether there are compositional differences among 
murine gut models with mild, moderate, and severe FD. First, we showed a significant 
increase in species richness as severity increases. Moreover, beta diversity analysis indicated 
increasing compositional differences as severity increases. Second, a differential abundance 
analysis revealed significant downregulation of core commensal microbes in mice with severe 
FD compared to healthy controls. Additionally, Indicator Species Analysis unveiled the 
presence of unique pathogenic species, such as select Clostridium spp., underlining the 
relationship between specific bacterial species and FD pathologies. Overall, our findings 
suggest that increases in gut microbial richness observed in murine models with severe FD is 
due to the downregulation of some commensal microbes and the introduction of unique 
pathogenic species. These results accentuate the gut-brain and gut-metabolism axes as 
promising therapeutic targets for FD.  
 
INTRODUCTION 

ereditary Sensory and Autonomic Neuropathies (HSANs) are a group of rare genetic 
disorders that affect the autonomic nervous system (ANS) in addition to sensory nerves. 

The varying groups are classified by their clinical presentation, but often include sensory loss 
and autonomic dysfunction. Among these subtypes, HSAN type III, also known as Riley-Day 
syndrome or Familial Dysautonomia (FD), is by far the most prevalent (1). FD is driven by a 
defective ELP1, encoding a core subunit of the elongator complex (ELP1-6). ELP1 is 
responsible for the proper translation of genes within the central and peripheral nervous 
system, which is necessary for supporting neuron development and activity (1, 2). Patients 
who are homozygous recessive for ELP1 experience impaired neuron function specific to 
sensory and autonomic systems, many of which have been linked to the dysregulation of the 
gut microbiome (3, 4). Consequently, changes in metabolism arising from the crosstalk 
between the gut and brain can alter the metabolic profile of FD patients, such as lower lipid 
content (5, 6, 7). Gut dysbiosis is also known to drive changes beyond inflammation and 
metabolism, including gastrointestinal (GI) symptoms which diminishes the quality of life 
among FD patients (3, 8, 9). Many FD patients presenting GI symptoms are limited to 
fundoplication and gastronomy as current treatment options (8, 10).  

Many other neurological diseases and disorders such as Alzheimer’s disease (AD), 
Parkinson’s disease (PD), Autism Spectrum Disorder (ASD), Amyotrophic Lateral Sclerosis 

H 

Published Online: September 2023 

Citation: Khatra, Shee, Wang A, Wang WCK. 
2023. Increased pathological severity of Familial 
Dysautonomia enriches murine gut microbial 
composition. UJEMI+ 9:1-14 

Editor: Shruti Sandilya, University of British Columbia 

Copyright: © 2023 Undergraduate Journal of 
Experimental Microbiology and Immunology.  

All Rights Reserved.  

Address correspondence to: 
https://jemi.microbiology.ubc.ca/ 

 

 

 

 

 

The	Undergraduate	Journal	of	Experimental	
Microbiology	&	Immunology	(+Peer	Reviewed)	



UJEMI+ Khatra et al. 

September 2023   Volume 9:1-14 Undergraduate Research Article https://jemi.microbiology.ubc.ca/ 2 

(ALS), Multiple Sclerosis (MS), and Huntington’s disease (HD) are often characterized by 
gut dysbiosis (11, 12, 13, 14, 15, 16). Recent studies have shown that resident microbiota play 
an important role in regulating inflammatory processes, and an altered microbiome may 
contribute to inflammatory signatures typical of many neurodegenerative diseases (17). 
However, microbial species pertinent to each disorder will differ depending on environmental 
factors and pathological interactions (18, 19), stressing the significance of distinct species on 
pathophysiology. Higher propensities for disease progression have been linked to the 
dysregulation of key bacterial species, including increases in select Clostridia species, or 
reduction in some commensal species such as Lactobacillus and Bifidobacterium (20, 21, 22). 
Such imbalances are associated with the downregulation of key metabolites such as short 
chain fatty acids (SCFA), which hold neuroprotective roles against gut permeability (13, 23). 
Furthermore, Cheney et al. recently highlighted the role of gut dysbiosis and its effects on the 
gut-brain axis in FD patients (3). Thus, metabolic regulation may potentially be a critical 
player in dysbiosis-mediated pathogenesis. Overall, these findings suggest that gut and brain 
crosstalk is involved in many neurological diseases and disorders. Thus, modulating the gut 
microbiota may be a promising therapeutic strategy for these disorders. 

In our study, we explored whether increasing severities of FD is driven by changes in the 
microbiome. Here we characterized compositional differences by analyzing alpha and beta 
diversity metrics. We expect that with increasing pathology, more unique species are 
identified with an overall decrease in diversity (17). In examining the relationship between 
pathology scores and microbiome composition, we determined whether greater abundances 
of pathogenic bacteria compared to commensal bacteria triggers progression of the disease. 
Unexpectedly, we found that at higher severities, there was an overall increase in bacterial 
richness. While the majority (50%) of core microbiota appeared to be shared, there were a 
few taxa that were unique to each severity category. Specifically, we identified that select 
commensal species were less abundant while species linked to pathogenesis were more 
abundant in severe FD. 

 
 
METHODS AND MATERIALS 

Data information. The raw Fastq files used in this study were obtained from a previous study 
by Cheney et al., containing stool samples from mice with FD pathology scores ranging from 
0 (no disease) to 12 (severe disease) (3). These files included mice from multiple cohorts of 
the Cheney et al. study, such as the mice from the cohoused study, the succinate study and 
general experiments (3). The Specific Pathogen Free (SPF) C57BL/6 mice with the Tuba1a-
Cre+; Elp1loxp/loxp mutation were used to model FD, while the Tuba1a-Cre−; /Elp1+/loxp 
littermates were used as the controls. Both male and female mice were included in this study 
with ages ranging from 21 to 485 days. Age was not further categorized in our study. DNA 
was extracted from murine stool samples using a DNeasy Powersoil kit. 
 
Metadata manipulation. The original metadata categorized the pathological severity of FD 
in mice through a scoring system based on eight factors, including hind limb clasping, 
evidence of grooming, presence of cataracts, presence of kyphosis, motor 
function/movement, presence of tremors, observed jumping activity, and body condition. The 
pathology scores ranged from 0 to 12, where 0 represented the presence of the mutation 
without observable symptoms, and 12 represented severe disease. However, the highest FD 
pathology score observed in the metadata was 10, while the lowest score present was 0. Thus, 
we manually edited the metadata file by binning pathology scores of 0-4, 5-7, and 8-10, into 
mild, moderate and severe FD groups respectively. Since mice with a pathology score of 0 
still had the mutation that causes FD, they were grouped into the mild severity group. The 
control mice without the mutation were not assigned a pathology score and were binned 
separately.  
 
Data processing using the QIIME2 pipeline. The data processing steps performed through 
Quantitative Insights into Microbial Ecology version 2 (QIIME2) (24) are detailed in the 
supplemental QIIME2 script (QIIME2Script). The raw pair-ended sequence reads were 
imported and demultiplexed, along with the modified metadata table, into QIIME2 (version 
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2022.2). A truncation length of 251 base pairs was applied to the reads to ensure a minimum 
median Phred score of 30. The Divisive Amplicon Denoising Algorithm 2 (DADA2) (25) 
plugin was used as a quality control and to cluster the resulting high-quality reads to amplicon 
sequence variants (ASVs). Denoising techniques were used to produce ASVs instead of 
clustering techniques that result in operational taxonomic units (OTUs), enhancing accuracy 
beyond 97% identity OTUs and better distinguishing biological variations from sequencing 
errors (26). The ASVs were taxonomically assigned using the Naive Bayes classifier (27, 28) 
pre-trained on truncated full-length sequences (251 base pairs) from the SILVA 138 99% 
database (29, 30, 31, 32) for the V4 region of the 16S rRNA gene (33). The 515F primer 
(GTGCCAGCMGCCGCGGTAA) and 806R primer (GGACTACHVGGGTWTCTAAT) 
were used for amplification (34). Based on the alpha-rarefaction curve, a sampling depth of 
9,000 was selected (Figure S1), which retained 151 (73.66%) samples overall (74 samples in 
control, 22 samples in mild, 33 samples in moderate, 22 samples in severe). 
 
Features table filtering. The non-bacterial ASVs, such as those corresponding to 
chloroplasts and mitochondria, were removed from the feature table during QIIME2 analysis. 
The feature table was also filtered to remove any ASVs from FD mice that did not have an 
assigned pathology score. Additional feature table filtering was performed in R (version 
2022.12.0) (35) using the phyloseq package (version 1.42.0) (36) as detailed in the 
supplemental R script (RScript). The low-abundance ASVs that may be a result of sequencing 
errors or background noise were filtered by setting a minimum relative abundance threshold 
of 0.05%. Low-quality samples were also filtered by removing any samples with less than 
100 reads.  
 
Data processing using R packages. The rooted phylogenetic tree (37, 38), feature table (39), 
and taxonomic data (40) generated through QIIME2, along with the processed metadata, were 
imported into R using the read_delim function of the tidyverse package (version 2.0.0) (41). 
The information from these files were combined into a single phyloseq object using the 
phyloseq package (36), which was used in all downstream analyses, including the diversity, 
core microbiome, differential abundance and indicator species analyses. The tidyverse (41), 
ape (version 5.0) (42), and vegan (version 2.6-4) (43) packages were also used for processing 
or filtering data in downstream analyses. 
 
Alpha and beta diversity analyses. Visualization of alpha diversity between the microbial 
gut composition of mice with varying FD severity was done by creating Chao1 and Shannon 
diversity boxplots using the ggplot2 (version 3.4.1) (44) package (Figure 1). The Kruskal-
Wallis test was applied to both metrics to assess whether differences in microbial diversity 
were statistically significant. 

A pairwise permutational analysis of variance (PERMANOVA) was performed for the 
Jaccard, Bray-Curtis, unweighted UniFrac, and weighted UniFrac metrics in R using the 
vegan (43) and phyloseq (36) packages to determine the beta diversity between murine 
microbial gut compositions with varying FD severity. Each beta diversity metric was 
conducted using 10,000 permutations and a p-value cutoff of  <0.05, which defined statistical 
significance. The betadisper function (version 2.6-4) (43) was used to analyze the multivariate 
homogeneity of the group dispersions for each of the beta diversity metrics. To visualize the 
beta diversity analysis between the control, mild FD, moderate FD, and severe FD mice, we 
generated principal coordinate analysis (PCoA) plots using the ggplot2 (44) package. 
 
Core Microbiome analysis. Core microbiome analysis was performed in R using the 
microbiome (version 2022-11-01) (45) package, detailed in the supplemental R script 
(RScript). The detection and prevalence thresholds were set to 0.001 and 0.75 respectively. 
A Venn diagram was made using ggVennDiagram (version 1.2.2) (46) to visualize the 
similarities between core members in each group by the number of shared taxa and their 
respective percentages.  
 
Differential abundance analysis. The samples were subdivided into three groups: control 
and mild FD, control and moderate FD, and control and severe FD. Differential abundance 
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analysis was performed on each of these groups to determine the change in abundance of 
shared taxa using the DESeq2 package (version 01/23/2023) (47), as detailed in the 
supplemental R script (RScript). The log fold differences for significantly different ASVs 
were visualized using a volcano plot and a dot plot, which were generated with ggplot2 (44). 
For the volcano plot, a log2foldchange>1.5 and an adjusted p-value<0.05 were used as the 
cutoffs. For the dot plot, only the adjusted p-value<0.05 was used as the cutoff. All p-values 
were adjusted with the Benjamini–Hochberg procedure through the DESeq2 package (47). 
Differentially abundant genera that were unable to be identified at the genus level were 
removed from the analysis. 
 
Indicator species analysis. Indicator species analysis was performed in R using the 
indicspecies package (version 2022-03-05) (48), as detailed in the supplemental R script 
(RScript). Data was filtered to control, mild, moderate, and severe for indicator analysis at 
each FD severity. The ASVs were filtered at the species level, and only outputs with a p-
value<0.05 are shown in the taxonomy table with their corresponding observed indicator 
value (Table 2).  
 
Data availability. The microbiome 16S rRNA sequencing data used in this project can be 
found on the National Center for Biotechnology Information (NCBI) BioSample database 
(49) with the accession number PRJNA785599. The custom metadata table, QIIME2 
command line scripts for data processing and filtering, and the R scripts for alpha diversity, 
beta diversity, core microbiome, differential abundance and indicator species analyses can be 
found within the supplementary materials.  
 
RESULTS 

Mice with increasing FD severity displayed greater richness in microbial gut 
composition. Alpha diversity analyses, including the Chao1 and Shannon’s diversity metrics, 
were performed to determine the impact of FD severity on gut microbial diversity in mice. 
We hypothesized that microbial diversity would decrease with increasing disease severity due 
to disruption of the normal microbial balance in the body, leading to a state of dysbiosis in 
the severe FD group. However, the Chao1 metric, which is a quantitative measure of 
microbial richness, showed an increase in microbial diversity with increasing FD severity 
levels, with the most severe FD mice displaying the greatest richness (Figure 1A).  

 

FIG. 1 The richness of microbial composition increases with increasing FD severity as indicated by alpha diversity metrics. 
(A) Quantification of microbial alpha diversity richness (Chao1) across different FD severity levels and healthy control mice, 
error bars indicate mean ± SE, p=0.001743 (Kruskall-Wallis Test). (B) Quantification of microbial alpha diversity evenness 
(Shannon) across different FD severity levels and healthy control mice, error bars indicate mean ± SE, p=0.9484 (Kruskall-Wallis 
Test). Control n=74, Mild n=22, Moderate n=33, Severe n=22. ** indicate a significant difference between control and FD 
severity subjects p<0.05.  
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The Shannon diversity metric, which is a quantitative measure of microbial evenness, did not 
display distinguishable microbial differences between the varying severity levels (Figure 1B). 
Statistical analysis using the Kruskal-Wallis test revealed only Chao1 and not Shannon 
diversity metrics as statistically significant. Although the alpha diversity results were initially 
not what we expected, other sources of literature have reported similar trends (50).   

A comparison between healthy controls and FD severity displayed significantly 
different microbial gut compositions. The weighted UniFrac beta diversity analysis was 
performed to assess between-group microbial differences for the healthy control mice and 
mice with varying levels of FD severity. Through this analysis, we expected a significant 
difference in the murine gut microbiome for all the FD severity groups compared to the 
healthy control. As expected, the pairwise PERMANOVA test revealed statistically 
significant microbial composition differences between the control and all the FD severity 
levels (Table 1). Other beta diversity metrics, including the Jaccard and unweighted UniFrac 
metrics, did not meet the assumption of multivariate homogeneity and, therefore, could not 
be used for diversity analysis. However, the PCoA plots generated for the weighted UniFrac 
metric did not show clear clustering patterns between healthy control mice, mice with mild 
FD, mice with moderate FD, and mice with severe FD (Figure S2).  
 
TABLE. 1 Significant changes in beta diversity of the gut microbiome as a 
result of disease severity. Pair-wise comparison between each FD severity level 
and the healthy control indicates significant differences in beta diversity. Statistical 
analysis was performed using the PERMANOVA test. Control n=74, Mild n=22, 
Moderate n=33, Severe n=22. The threshold of significance is p<0.05. 

 R2 value p-value 
Control vs. mild 0.040 0.0042 

Control vs. moderate 0.057 9.9e-05 
Control vs. severe 0.057 2.0e-04 

 
The core microbiome was consistent regardless of FD severity in mice. A core 

microbiome analysis was performed to determine the degree of shared taxa between the 
healthy control and mild, moderate and severe FD groups. Prior to analysis, we expected the 
FD severity groups would have a low proportion of shared core taxa and a high proportion of 
unique taxa specific to each group. However, this analysis showed that 50% of taxa were 
shared amongst all groups, with 4% unique to each of the control and mild groups, and 8% 
unique to the moderate and severe groups (Figure 2). Contrary to our initial expectations, 
there was a high proportion of shared taxa between the control and different FD severity 
groups and a low proportion of unique taxa.    

 

FIG. 2 The core microbiome is 
consistent across FD severity at the 
phyla level. Core microbiome analysis 
was conducted on 51 murine samples in 
four conditions of no FD (control) and 
FD severity of mild, moderate, and 
severe. Analysis was done with a 
detection threshold of 0.001 and a 
prevalence threshold of 0.75. Results 
show that most of the taxa were shared 
amongst the four conditions and few taxa 
are unique to each condition, as 50% of 
the taxa were shared in all groups.  
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Differential abundance analysis showed a reduced abundance of 4 major phyla in 
mice with severe FD.  Differential abundance analysis was conducted to determine the 
change in abundance of the shared taxa between the control and each FD severity group. A 
volcano plot was constructed to visualize the differential abundance between the control and 
severe FD group based on the negative log10 adjusted p-value, in which 9 ASVs were 
downregulated and 1 ASV was upregulated (Figure S3). A volcano plot was also created for 
the control and mild FD groups, but no significant results were found (Figure S4A). While a 
volcano plot comparison of the control and moderate FD group demonstrated downregulation 
of 4 ASVs and an upregulation of 1 ASV (Figure S4B). Since the control and severe FD 
groups had the most differences in the abundance of shared taxa, these differences were 
selected to be explored further. The shared taxa between the control and severe FD group 
were found to be less abundant in the severe FD mice, as illustrated by a statistically 
significant negative log2 fold change in the shared taxa (Figure 3).  In comparison to the 
control group, 11 taxa belonging to the phyla of Actinobacteria, Bacteroidota, Firmicutes, and 
Proteobacteria were found to be downregulated in severe FD mice (Figure 3). Specific genera 
for each phylum include Dubosiella, Lactobacillus, Bifidobacterium, Faecalibaculum, 
Eubacterium, Parasutterella and Paraprevotella (Figure 3). These findings support our 
hypothesis that reduced abundance of commensal-associated bacteria are linked to higher 
disease severities compared to the control group, as reported in other literature.  

 
Indicator species analysis revealed a unique signature of Clostridia spp. in severe 

mice. The indicator species analysis was conducted to further explore the unique taxa found 
in the FD severity groups through core microbiome analysis. Escherichia-Shigella was found 
to be unique in mild FD mice, no species were unique to moderate FD mice, and 8 species 
were unique to severe FD mice (Table 2). Amongst the 8 indicator species in severe FD mice, 
4 are found to be Clostridia species, which are known to be opportunistic pathogens in the 
gut microbiome. These results align with our expectations of finding unique pathogenic 
species in the severe FD group that may be driving the progression of the disease.   

 
DISCUSSION 

The present study investigated the role of increasing FD severity in gut dysbiosis to 
determine whether compositional irregularities in the microbiome contributed to disease state. 
In our study, we demonstrated that disease progression was positively correlated with 
bacterial richness in the gut of murine models, owing largely to the upregulation of pathogenic 
bacteria, and downregulation of normal commensal species (Figure 4). As most core taxa 
appear to be shared, differences in microbiome between disease and non-disease conditions  

FIG. 3 Differential abundance analysis 
(DESeq2) unveiled reduced abundance of 
4 major phyla in mice with severe FD 
compared to healthy controls. Taxonomic 
data was filtered and coloured at the genus 
and phylum levels, excluding any 
unidentified taxa. Taxa were then ordered 
based on decreasing log2 fold change, and 
only those with a significant difference in 
abundance (adjusted p≤0.05) are illustrated. 
Statistical analysis was performed by the 
DESeq2’s median of ratios method. Each 
point in the plot represents a unique genus 
and is colour-coded by phylum. Points 
below the line indicate negative differential 
abundance, meaning they are less abundant 
in severe FD mice compared to control mice. 
Control n=74, Severe n=22. 
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TABLE. 2 Unique ASVs resolved to the class, order, family, genus, and species level by indicator species 
analysis. Indicator species analysis was conducted on murine samples with FD severity of mild, moderate, and 
severe (n=214). Taxonomic level was filtered at the species level, and only those with a significance in uniqueness 
are illustrated with decreasing observed indicator value (p<0.05). Observed indicator value (IV) represents the 
probability that a given ASV will be present in all samples of the FD severity group. Results show 1 species unique 
to the mild FD severity group and 8 species unique to the severe FD severity group.  

Taxon Class:Order:Family:Genus:Species  FD Severity 

Observed 
Indicator 

Value 
(IV) 

P-
value 

Phylum Proteobacteria     
    Gammaproteobacteria:Enterobacterales:Enterobacteriaceae:Escherichi
a-Shigella  mild 0.23 0.04 

Phylum Firmicutes      
    Bacilli:Erysipelotrichales:Erysipelotrichaceae:Turicibacter  severe 0.52 0.005 
    Clostridia:Clostridiales:Clostridiaceae:Clostridium_sensu_stricto_1  severe 0.51 0.01 
    Clostridia:Christensenellales:Christensenellaceae   severe 0.49 0.01 
    Bacilli:Lactobacillales:Streptococcus  severe 0.34 0.025 
    Clostridia:Oscillospirales:Ruminococcaceae  severe 0.32 0.005 
    Clostridia:Lachnospirales:Lachnospiraceae:Roseburia:Eubacterium 
plexicaudatum  severe 0.29 0.005 

Phylum Actinuboacteriota      
    Coriobacteriia:Coriobacteriales:Eggerthellaceae  severe 0.29 0.03 
Phylum Bacteroidota     
    Bacteroidia:Bacteroidales:Tannerellaceae:Parabacteroides  severe 0.34 0.005 

 

 
 
highlight the contributions of specific bacteria and the role they play in advancing disease. Of 
the commensal bacteria, reduction was observed among 11 genera, including Lactobacillus, 
Parasutterella, Paraprevotella, Faecalibaculum, Muribaculaceae, Bifidobacterium, 
Coriobacteriaceae, Eubacterium, Ureaplasma, ASF356, and Dubosiella. Comparatively, 8 
pathogenic species belonging to Bacilli, Coriobacteriia, Bacteroidia and Clostridia were 
observed in severe FD mice, with many belonging to the Clostridia class.  

FIG. 4 Proposed model of microbial gut 
dysbiosis in mice with severe Familial 
dysautonomia. The bottom panel shows 
the proposed model that increased richness 
in mice with severe FD is associated with 
decreased abundance of commensal 
bacteria and the presence of pathogenic 
bacteria. Whether these alterations in the 
microbiome are associated with changes in 
functional metabolomics remain 
undefined. Commensal gut bacteria are 
shown in green and blue, while pathogenic 
bacteria are shown in pink and red. FD 
refers to Familial dysautonomia. 
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Through the weighted UniFrac beta diversity analysis, we found that gut microbial 
diversity is significantly different between healthy controls and mice with FD (Table 1), 
supporting our hypothesis that FD severity has an effect on gut microbial composition. These 
results are also consistent with studies that have explored the effects of other neurological 
diseases and disorders, such as ASD and PD, on the gut microbial composition (11, 51). 
Similarly, the association between gut dysbiosis and FD severity suggests a potential role of 
the gut-microbiome-brain axis in the development of disease. As such, there is a need to 
further explore the gut-microbiota-brain axis in FD patients, which can provide a better 
understanding on the development of therapeutics in targeting gut composition in FD patients. 

The correlation between poor health prognosis and loss of microbial diversity is 
frequently observed in cases of gut dysbiosis, as seen in neurodegenerative diseases such as 
HD. Based on this understanding, we originally hypothesized that an increase in disease 
severity would result in a decrease in microbial composition (14, 52). Contrary to this 
perspective, an increasing trend between richness and disease severity was identified in our 
alpha diversity analysis (Figure 1). However, this trend is not unique to FD. In PD, increased 
microbial richness has also been associated with increased disease severity (50). A plausible 
explanation for this trend is that an increase in pathogenic microbes in the higher disease 
severity groups can be driving the observed increase in microbial richness. This presents the 
possibility that bacterial populations driving gut dysbiosis may be shared between 
neurodegenerative diseases such as FD and PD (53).  

After observing differences in gut composition between varying FD severity levels, we 
expected each severity group to possess more unique taxa than shared. However, closer 
evaluation of our murine model revealed that 50% of taxa were common to all disease 
conditions, while each individual condition consisted of a few unique taxa (4-8%) (Figure 2). 
Although we found a high proportion of shared taxa between the healthy group and each FD 
severity group, changes in the abundance of the shared core taxa could be contributing to the 
changes in disease severity. However, these interpretations have inherent restrictions, since 
homogenization of murine microbiomes via coprophagy is a potential confounding variable 
among cohoused mice which was not addressed in our analysis (3, 54).  

In comparison to the healthy control group, we identified 11 downregulated genera within 
the most severe group that aligned with commensal roles (Figure 3). Of the 11 genera, we 
examined well-studied commensal bacteria that are actively involved in metabolic 
homeostasis. Notably, Dubosiella is known to be downregulated in other neurological 
diseases such as AD (55). Lower abundances of this microbe are responsible for an unhealthy 
gut environment by promoting oxidative stress and its associated decrease in Lactobacillus 
and Bifidobacterium (56). Since we also found a decrease in the abundance of Lactobacillus 
and Bifidobacterium in mice with FD, the downregulation in Dubosiella may be driving this 
reduction and contributing to the decrease in gut motility and functioning (57). Lactobacillus 
and Bifidobacterium are known probiotic constituents that can treat GI symptoms while 
maintaining gut function and motility (58, 59). Furthermore, Lactobacillus spp. are known to 
enhance gut function by providing an intestinal barrier through increased mucus production 
which can limit pathogenic bacteria from infiltrating the gut (58). Bifidobacterium play a 
similar role in gut function by supporting intestinal impermeability (11). As seen in a study 
with Irritable Bowel Syndrome (IBS), supplementation of both commensal microbes was 
shown to preserve microbial composition (59, 60). This supplementation technique may be 
useful in mitigating the effects of FD severity.  

In addition to GI issues, metabolic changes are also commonly disrupted in FD patients 
(1, 61). Another beneficial bacterium that contributes to a healthy gut is Faecalibaculum (62). 
Gut dysbiosis is promoted when Faecalibaculum is downregulated due to lower SCFA 
production (62). These metabolites play protective roles in the body, strengthening gut 
barriers and regulating immunomodulatory functions (63). In our study, low levels 
of Faecalibaculum were detected in mice with severe FD, which imply reduced production 
of SCFA. Likewise, a common SCFA metabolite, butyrate, may have been diminished in 
mice with severe FD due to the downregulation of butyrate-producing microbes, such as the 
[Eubacterium] xylanophilum group. Butyrate has anti-inflammatory properties and can 
restore gut composition and functions, as observed in neurodegenerative diseases such as 
ALS (15). Therefore, the absence of Eubacterium and its associated reduction in butyrate 
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production may contribute to gut dysbiosis, inflammation, and impaired gut regulation in 
severe FD conditions. Given that the abundance of SCFAs has been linked to favorable 
impacts on the gut-brain axis in PD and AD (64, 65), it may also play a role in mitigating the 
outcomes of FD severity.   

Impairment of gut regulation is also impacted by changes in lipid and carbohydrate 
metabolism. Regulation of lipid metabolism is known to be mediated by two commensal 
bacteria, Parasutterella and Paraprevotella, as identified in a study exploring ASD (66, 67). 
Therefore, the reduction of Parasutterella and Paraprevotella that was observed in the severe 
FD mice may be associated with altered lipid regulation in FD patients. Our study also 
revealed a reduction in Muribaculaceae, which is known to regulate carbohydrate metabolism 
(68). Taken together, downregulation of these commensal bacteria may lead to mediated 
metabolic landscapes in FD patients which could potentially exacerbate disease severity.  

Through indicator species analysis, a selection of 8 bacterial classes were found to be 
associated with severe FD, suggesting that they may play a role in the progression of the 
disease. Studies investigating the relationship between the gut microbiome and nervous 
system communication continue to build evidence towards a neuropathology model instigated 
by gut dysbiosis (69). Of the taxa that were associated with severe FD, Clostridia stood out 
as the class of interest because 50% of identified taxa were represented under this 
classification, and many branches of Clostridia such as Lachnoclostridium, are upregulated 
in other neurological diseases such as AD (70, 71). Most notably of the 4, both 
Lachnospiraceae and Ruminococcaceae are known to modulate serotonin biosynthesis and 
regulation in intestinal enterochromaffin cells (20). Tryptophan, a precursor to serotonin, is 
also metabolically regulated by certain divisions of Clostridia (72). This suggests that an 
imbalance of these bacterial families may contribute to disruption of neurochemical 
homeostasis, which is highly correlated with neurodegenerative disorders (73). In addition, 
higher prevalence has been noted in patients with IBS, as the two families are thought to be 
involved in gut motility and sensorimotor detriments (10), a commonly affected process in 
FD patients. It is also observed that FD patients undergoing pneumonia treatment are more 
prone to C. difficile infection (71). 

Among the more pathogenic strains identified, Clostridium sensu stricto 1 possesses 
intestinal inflammatory capabilities and is associated with lower concentrations of SCFAs 
(74). Proportional imbalances of pathogenic and beneficial bacteria can exacerbate systemic 
inflammatory responses, and reversal of dysbiosis is predicted to suppress secretion of 
proinflammatory cytokines via supplementation of SCFA-producing bacteria (75). In FD 
patients, degenerative changes in the nervous system are often accompanied with signs of 
inflammation (1). Thus, one of the factors that contributes to the pathogenesis of FD could be 
metabolic in nature, and most likely represents a complex interplay with other bacteria present 
in the gut microbiome. Many neurodegenerative diseases are characterized by neuron damage 
via metabolite buildup (70), and it is plausible that the gut microbiome can contribute to the 
accumulative effect of these proteins. For instance, C. perfringens toxins B and D can induce 
symptoms related to motor dysfunction, which is typical of MS patients (22). Certain species 
belonging to Firmicutes and Bacteroidota can also produce amyloids that promote secretion 
of proinflammatory cytokines IL-7A and IL-22, causing chronic inflammatory responses 
typically seen in AD (22). The three previously mentioned taxa all mapped to severe FD in 
our species analysis. While not causal, this affirms current studies underscoring the 
importance of the gut-metabolism axis on neurological pathologies. 

In sum, lower numbers of commensal bacteria, along with greater abundances of 
pathogenic species observed in FD mice could conceivably be driving gut dysbiosis among 
FD patients. However, the functions of these commensal and pathogenic bacteria should be 
further explored in future studies to emphasize the impact of these metabolite producing 
bacteria (Figure 4). A better understanding of key metabolites may inform their relationship 
to dysbiosis, and at a broader scale, to the gut-brain axis. 

 
Limitations One caveat of our experiment was the low sample size of mice binned into each 
severity category relative to control samples. While still statistically feasible, the external 
validity of these results may be limited to the specific samples that we studied. Thus, it may 
not be possible to make reliable predictions based on our data alone, and the scope of analysis 
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remains quite limited. Additionally, the housing style (cohoused vs. non-cohoused) may have 
influenced the homogeneity of murine gut microbiomes but was not accounted for in our 
analysis. Cheney et al. highlighted that cohousing appeared to lower pathology scores across 
FD mice (3). Since the majority of our samples were designated as cohoused, our results may 
underestimate the full effect of gut dysbiosis on FD severity. Likewise, alpha diversity metrics 
may have been a lot higher if mice were housed separately. As such, it is probable that 
cohousing offers an inaccurate depiction of the gut microbiome in FD mice.  On a similar 
note, the overall analysis was performed on murine fecal samples only, which may not fully 
represent the true diversity of bacterial species. 

Assigning pathology scores to mice was based on arbitrary metrics chosen by Cheney et 
al. (3). It is fair to argue that interpretation of severity is highly subjective and can influence 
sample sizes between disease states. Until a standardized scoring system is implemented, 
results may not be easily replicable between studies. For instance, if future studies revealed 
correlations between certain metabolites and FD progression, we could define concentration 
ranges that map to specific severity levels. In a related context, human samples were provided 
in the metadata but did not have an assigned pathology score. Analysis of human gut 
microbiomes could have been more generalizable and representative, and it was unexpected 
that Cheney et al. did not define metrics for measuring FD pathology in humans when the 
symptoms associated with the disease are widely reported and known. 
 
Conclusions Our study investigated the effects of FD severity on murine gut microbiomes. 
It was observed that the severity of disease and the richness of gut microbiota were positively 
correlated. While many of the bacterial taxa were shared between disease states, notable 
pathogenic species, as well as commensals, were increased and decreased respectively. These 
findings have important implications for the development and progression of FD. The 
observed differences between pathogenic and commensal bacterial abundance highlights the 
probable role of dysbiosis in FD pathogenesis. Thus, the identified species in the severe FD 
category may pose as a promising target for future therapeutic research, raising the suggestion 
that supplementation or selective depletion of key bacteria could affect FD pathology. The 
present work emphasizes the need for additional research regarding the multidimensional 
relationship between the gut microbiome and FD pathology. Development of novel 
therapeutic strategies to improve neurodegenerative outcomes could further highlight the gut 
microbiota as a potential target for treatment. 
 
Future Directions In future studies, metabolites associated with the identified commensal 
and pathogenic bacteria can be explored by conducting a metabolomics analysis. This 
analysis could reveal regulatory differences in metabolic pathways associated with 
commensal bacteria, as well as pathways involved in inflammation, cytokine production and 
gut dysmotility in pathogenic bacteria. Determining the functions of these bacteria can 
provide evidence for the role they play in the microbiome at each severity. Additionally, 
exploring the positive correlation between unique species and disease severity by considering 
the taxonomic bar analysis can reveal whether similar species are identified at less than 1% 
threshold. This would bolster the credibility of our data and improve our understanding of the 
trend established between pathology and gut dysbiosis in FD. Furthermore, the effects of 
pathology can be isolated by separating the cohoused and non-cohoused mice to determine 
whether the observed trends in microbial diversity are maintained when homogenization of 
the microbiome is accounted for. The comparison between non-cohoused and cohoused mice 
is expected to present similar trends albeit with greater variability and lower number of shared 
taxa. Alternatively, additional murine samples from different sites such as the colon should 
be contrasted with the fecal samples used in the study. Exclusively using fecal samples may 
eliminate other bacterial species only present in specific niches in the gut. By evaluating 
samples from different sites, the true diversity of gut species may be more represented (76). 
Lastly, to assess the generalizability to the human metabolome, a comparison can be made 
between the metabolites found in FD mice and human samples. The expected outcome is that 
metabolites downregulated during gut dysbiosis would be shared in both animal and human 
models, which has implications for the development of potential therapeutic targets for 
patients with FD. 
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