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SUMMARY  Parkinson’s disease (PD) is a neurodegenerative disease with symptoms of motor 
function loss and psychological changes. In the early stages of PD, patients display symptoms 
of depression and fatigue, which may be indicative of the disease. Studies have shown that 
both depression and fatigue are independently related to the gut microbiome of PD patients, 
however their combined effect on the gut microbiome remains largely unknown. In this study, 
we aimed to determine if there is a relationship between the gut microbiome of PD patients 
and their reported level of fatigue and depression. Here we define distressed patients as those 
with high fatigue and high depression scores, and non-distressed patients with low fatigue 
and low depression scores.  

While linear correlation and alpha and beta diversity analysis showed no relationship 
between patients' fatigue and depression scores, an indicator species analysis revealed a 
higher abundance of Romboutsia and Erysipelatoclostridium genera in distressed PD patients 
and Parasutterella in non-distressed PD patients. These findings improve our understanding 
of how the severity of depression and fatigue in PD patients changes the gut microbiome. 
Further studies should investigate other mental health disorders faced by patients to provide 
a better understanding of the relationship between the gut microbiome, mental health, and 
PD. 
 
 
INTRODUCTION 

arkinson’s disease (PD) is one of the most common neurodegenerative disorders in the 
world and is characterized by the loss of motor function (1). PD patients also display a 

variety of non-motor symptoms including mental health disorders, gastrointestinal (GI) 
symptoms, and comorbidities which may display before the onset of motor symptoms.  

In recent years, studies have discovered a connection between the gut microbiota and the 
brain, established differences in the gut microbiota of PD patients and healthy controls, and 
found that gut microbiota imbalance affects the development and occurrence of Parkinson’s 
disease via association with increased intestinal permeability (2). According to the 
Parkinson’s Foundation, PD patients exhibit mental health symptoms more frequently than 
healthy individuals. Common disorders reported by patients include anxiety, depression, and 
apathy, and are often overlooked and undertreated in PD patients (3). Previous studies have 
associated dysbiosis, an imbalance of the microbial community, with mental health disorders 
such as depression (4, 5). Others have found that PD patients with depression have altered 
gut microbiota compositions compared to patients without depression (4, 6). 

Fatigue is another non-motor symptom of PD common in early stages of the disease 
which can occur on its own or with other symptoms including depression. Previous studies 
reported alterations and reduced diversity in the gut microbiome in cancer patients with 
fatigue symptoms compared to healthy, non-fatigued control groups (7, 8). Some researchers 
have also found that the accumulation of D-lactic acid from bacterial fermentation in the gut 
can lead to an excess in the blood and brain which may lead to fatigue (9). These findings are 
important to the study of PD as fatigue is one of the most common symptoms, occurring in 
over half of patients (10, 11). 

Moreover, previous studies identified specific phyla and genera of gut microbes linked to 
PD. These studies found a reduced abundance of Proteobacteria (12) and reduced counts of 
Faecalibacterium among PD patients with depression compared to healthy individuals (13). 
Although research is lacking around gut microbiome alterations from fatigue in PD patients 
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specifically, past studies have proven that chronic fatigue syndrome can be treated with fecal 
microbiota transplants (14). There is a gap in research regarding the combined impact of 
depression and fatigue on the gut microbiome of PD patients. Therefore, the purpose of this 
study was to investigate how changes to the gut microbiota of PD patients reporting fatigue 
and depression relates to patients who do not report these symptoms. We hypothesized that 
patients displaying these symptoms will have altered abundances of certain microbial genera 
compared to non-symptomatic patients. To test this hypothesis, we analyzed the microbiota 
composition of patients who reported high fatigue and high depression scores to see whether 
this affected their microbiota composition.  A difference in gut microbiota at the genus level 
was observed. This research may be helpful in using gut microbes for the prevention, 
detection, and treatment of PD.  

 
 
METHODS AND MATERIALS 

Dataset and metadata. The dataset used in this study is from Cirstea et al. which analyzed 
197 PD patients alongside 103 non-PD controls (37). Serum was provided by the subjects for 
metabolomics. Fecal samples were collected from patients for microbial sequencing and 
serum for untargeted metabolomics (n=125).  The 16S rRNA v4 region was amplified and 
collected using Illumina MiSeq platform sequencing to produce the raw sequences used for 
analyses in this paper. 

The purpose of the original study was to find associations between microbiota 
composition, stool consistency, constipation, and systemic microbial metabolites in 
Parkinson’s disease and determine how intestinal microbes contribute to gastrointestinal 
disturbances typically seen in patients. To aid in their study, the researchers collected data 
regarding a variety of Parkinson's symptoms, including diet, demographics, and other 
variables.  

 
Metadata filtering and grouping. In the original dataset, depression scores were reported 
on the Beck’s Depression Inventory (BDI) scale ranging from 0-25, where patients are self-
scored based on a questionnaire, with a higher score indicating higher signs of depression 
(15). According to the scale those with a score of 17 and over are deemed to have “borderline 
clinical depression”. Fatigue scores were reported using the Fatigue Severity Scale (FSS) 
score metrics, which ranges from 1-7, with higher scores indicating higher fatigue and scores 
over 4 indicative of significant fatigue (16). 

First, the metadata file was downloaded in excel format and all control subjects (patients 
without PD) were removed. Using the remaining PD patients, FSS fatigue scores (y-axis) 
were plotted against BDI depression scores (x-axis) to see whether or not these scores are 
correlated (Fig. 1). A plot was made using the ggplot (17) function on R studio and the R 
squared value was reported. In order to control for the variation in the sample and to focus on 
patients most severely affected by both fatigue and depression, we further grouped samples 
according to both scores. Two categories of patients were created (Table 1). The first included 
those with high depression and fatigue scores categorized as “Distressed”. This category 
consisted of patients who had a depression score of 15 or over and a fatigue score of 5 and 

 Distressed Non-Distressed 

BDI Depression Score 15+ 0-4 

FSS Fatigue Score 5+ 1-2 

TABLE. 1 Depression and fatigue score ranges for distressed and non-distressed 
patients. Depression and fatigue scores were assessed by patient self-reports and 
recorded by Cirstea et al. 
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above. A second category, which we labelled ‘Non-Distressed’ consisted of patients who had 
low scores for both fatigue and depression. This included patients with BDI scores of 0-4 and  
fatigue scores of 1-2. A new column was added to the metadata in which “Distressed” patients 
were labelled as “high” and “Non-Distressed” were labelled as “low”. Patients who had 
scores for either depression or fatigue which fell between distressed and non-distressed score 
ranges were excluded from further analyses and assigned “NA”. Using this method, 12 
distressed samples and 14 non-distressed samples were obtained. The metadata was then 
saved as a text file and exported to QIIME2 for data processing.  
 
QIIME2 data processing pipeline. Microbiome bioinformatics were performed using 
Quantitative Insights into Microbial Ecology 2 (QIIME 2) 2017.4 (18). The raw sequence 
data were demultiplexed and quality filtered using the q2‐demux plugin followed by 
denoising with DADA2 (19) (via q2‐dada2). The demultiplexed samples were exported and 
viewed using the QIIME2 view website. Quality control was performed on the sample using 
the demultiplexed sequence counts summary. The truncation length was determined to be 251 
(demux.qzv). Amplicon sequencing variants (ASVs) were identified and aligned in the 
different samples (table.qzv). Taxonomy was assigned to ASVs using the q2-feature classifier 
(silva-138-99-515-806-nb-classifier.qza) (20) and taxa bar plots were generated from the 
taxonomy files. The taxonomy tables were then filtered to remove mitochondria and 
chloroplast sequences to create a filtered taxonomy table. The resulting filtered table (table-
no-mitochondria-no-chloroplast.qza) was viewed using QIIME2 view and the alpha 
rarefaction curve was generated using a sequencing depth of 7563. This depth was selected 
because it allowed us to retain 56% of the samples and have enough sequences and samples 
to work with, with only one sample eliminated from the distressed group. A total of 14 ‘low’ 
(non-distressed) and 11 ‘high’(distressed) samples were retained.  

Alpha‐diversity metrics (Observed Features and Shannon’s Phylogenetic Diversity (21), 
Faith’s Phylogenetic Diversity (22)), beta diversity metrics (Weighted UniFrac (23), 
Unweighted UniFrac (24), Jaccard distance (25), and Bray‐Curtis dissimilarity (26)), and 
Principle Coordinate Analysis (PCoA) (27) were generated. Data outputs from QIIME2 were 
exported into R (v4.2.2) and R studio (v2022.12.0.353) (28).  
 
Alpha and beta diversity analysis in R. Using previously imported files from QIIME2 
including the metadata, feature table, taxonomy table, and phylogenetic tree outputs, a 
phyloseq object was created with the phyloseq (29), ape (30) and tidyverse (31) packages in 
R. The resulting phyloseq object was then filtered using the phyloseq package (29) to filter 
out non-PD samples and remove any NAs. To determine differences in gut microbiome 
diversity between distressed and non-distressed PD patients, we ran alpha and beta diversity 
analyses. For alpha diversity, “Distressed” and “Non-distressed” PD patients were assessed 
using the Shannon diversity metric. Results were visualized with a boxplot using the phyloseq 
(29) and ggplot2 (17) R packages. For beta diversity, “Distressed” and “Non-distressed” PD 

FIG. 1 BDI depression score 
and FSS fatigue score are 
weakly correlated in PD 
patients. Considerable variation 
is observed between patient 
depression and fatigue scores, 
with some patients expressing 
high fatigue and depression. 
R2=0.34. R2 signifies the 
strength of the correlation by 
determining how much of the 
variance in the dependent 
variable (FSS fatigue score) is 
explained by the independent 
variable (BDI depression score). 
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patients were assessed using the Weighted UniFrac, Unweighted UniFrac, Jaccard, and Bray-
Curtis beta diversity metrics. The data for each metric was plotted on principal component 
analysis (PCA) plots using the phyloseq (29) package in R. Only the Weighted UniFrac PCA 
plot showed possible clustering and was therefore chosen for subsequent analyses. Statistical 
analysis was performed on the chosen Weighted UniFrac diversity metric using 
PERMANOVA testing with 999 permutations and a significance level of p < 0.05, using the 
phyloseq (29) and vegan (32) packages in R.  
 
Taxa bar plot in R. The phyloseq (29) package in R was used to create a taxonomic bar plot 
at the phylum level to begin assessing taxonomic differences between distressed and non-
distressed PD patients and to get an idea of differences in the microbial composition between 
the two groups. First, the ASV table was converted to relative abundance to transform raw 
counts into percentages. Next, we clustered by phylum and faceted by PD patient status 
(“Distressed” vs “Non-distressed”). 
 
Indicator Species Analysis in R. To determine if there were species that were more prevalent 
and/or abundant in distressed and non-distressed PD patients, we ran an indicator species 
analysis on distressed and non-distressed patients using our existing phyloseq object and the 
phyloseq (29) and indicspecies (33) packages in R. First, we converted the phyloseq table to 
relative abundance. Then, we used multipatt to cluster samples into distressed or non-
distressed groups. Results were viewed using the summary command to generate a list of all 
indicator species for each group. The output revealed indicator bacteria at the genus level that 
were differentially abundant between the two treatment groups as signified by the calculated 
indicator values and significant P values (p<0.05). Only statistically significant genera (p < 
0.05) were considered indicators. We then converted these results into a table. 
 
RESULTS 

The alpha diversity of distressed and non-distressed PD patients was similar. Alpha 
diversity metrics were analyzed to investigate the gut microbiome diversity of distressed vs 
non-distressed PD patients. The Shannon alpha diversity metric, which accounts for species 
richness and evenness, displayed similar diversity indices for distressed and non-distressed 
groups (Fig. 2). These results suggest that the diversity of species in PD patients is high for 
both distressed and non-distressed groups and that patient status does not affect the within-
group microbial richness and abundance. The alpha diversity of non-distressed patients also 
had a greater range than distressed patients. Since the IQR is resistant to change, outliers were 
not removed for future analysis and were considered biological variation between samples.  

FIG. 2 Patient status does not 
alter alpha gut microbial 
diversity. Shannon alpha 
diversity metrics grouped by 
PD patient distressed 
(Shannon’s index = 3.70) or 
non-distressed (Shannon’s 
index = 3.68) status. Whiskers 
represent the mean +/- 
IQR*1.5. 
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Statistical significance was not calculated as the median appeared similar upon visual 
inspection.  

No differences in gut microbiome diversity between PD patients who are distressed 
and non-distressed according to Weighted UniFrac beta diversity. To determine how 
patient status affects the gut microbiome diversity of PD patients, Weighted UniFrac beta 
diversity metrics were analyzed. We observed no distinct clustering between distressed and 
non-distressed groups on the PCA plots, and many samples were clustered together (Fig. 3). 
Jaccard, Bray-Curtis, and Unweighted UniFrac beta diversity metrics were also analyzed but 
showed no clustering (Fig. S1). These results suggest that patient status may not affect 
microbial diversity. 

 
Relative abundances of bacterial phyla are similar for distressed and non-distressed 

PD patients. We compared the relative abundance of bacterial phyla for each patient grouped 
by their status (Fig. 4). There were no noticeable differences in abundant phyla between the 
two groups. The most abundant phyla for both groups were Firmicutes and Bacteroidota.  

Indicator taxa analysis reveals 2 indicator genera for distressed patients and 1 for 
non-distressed patients. We performed an indicator taxa analysis at the genus level to 
identify bacterial genera that were more abundant and prevalent for each patient status group 
(Table 2). We found that Romboutsia and Erysipelatoclostridium were indicator genera for 
distressed patients and Parasutterella was an indicator genus for non-distressed PD patients. 
All three genera have high indicator values which are close to the maximum value of 1. This 
means the ASVs for these groups have both high relative abundance and high relative 
frequency.  

Patient Status Phylum Genus Observed Indicator Value (IV) P-value 
Distressed Firmicutes 

 
Romboutsia  0.732 0.035 

Distressed Firmicutes Erysipelatoclostridium  
 

0.689 0.025 

Non-Distressed Proteobacteria Parasutterella  0.863 0.035 

TABLE. 2 Indicator species analysis reveals 3 indicator genera for distressed and non-distressed PD patients. 
Indicator taxa analysis was performed at the genus level. Observed indicator values and p values are shown alongside 
indicator genera and phyla. Indicator value scores ASVs based on their abundance and prevalence to assign association 
within a group. High indicator values represent both high abundance and high prevalence of an ASV within a particular 
group. All p values were below the threshold set for analysis (p ≤ 0.05). 
 
 

FIG. 3 No distinct microbial communities observed 
based on distressed and non-distressed status in PD 
patients. Principal component analysis plot using 
Weighted UniFrac beta diversity metric. Microbial 
communities did not separate based on distressed (red 
circle) and non-distressed (cyan triangle) conditions in 
PD patients. Corresponding PERMANOVA results 
show no significant difference between groups (P-
value = 0.614). 
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DISCUSSION 

Depression and fatigue are weakly correlated in PD patients. Before performing 
diversity analyses and deciding how to bin samples, we aimed to determine the correlation 
between depression and fatigue scores in PD patients. Previous studies have found that there 
is a strong correlation between depression and fatigue in PD patients (36). However, it was 
important to examine this relationship for our dataset specifically. We found that depression 
and fatigue scores for our dataset were weakly correlated. This may have differed from the 
strong correlation found by Santos-García et al. (36) due to the limited size of the dataset 
provided by Cirstea et al. (2020), as well as the presence of other confounding variables in 
patient samples such as age (37).  

Alpha and beta diversity analyses show no differences in gut microbiome diversity 
between distressed and non-distressed PD patients. We observed no differences in gut 
microbiome diversity between distressed and non-distressed PD patients according to alpha 
and beta diversity analyses. This indicates that the microbiome composition between 
distressed and non-distressed PD patients is similar. Comparably, previous studies have 
shown that there is a strong association between microbiome composition and depression via 
the bidirectional gut-brain axis (6, 14, 38). These studies noted that bacteria in the gut 
microbiome produced metabolites like glutamate, butyrate, serotonin, and gamma amino 
butyric acid (GABA), which are important neurotransmitters for depression, suggesting the 
influence of these microbial communities on an individual’s mood and behaviours (39). 
Previous studies also reported alterations and reduced diversity in the gut microbiome in 
individuals with fatigue symptoms compared to healthy, non-fatigued control groups (7, 8). 
However, we did not find a notable reduction in diversity between PD patient groups, which 
may suggest that depression has more of an effect on gut microbiome diversity than fatigue 
in distressed and non-distressed PD patients.  

However, these studies looked at an isolated association between depression and the gut 
microbiome or fatigue and the gut microbiome, whereas our study examined the effect of 
distressed status, a combination of depression and fatigue, on PD patients’ gut microbiota. 
Hence, our results are not directly contradicted by previous findings, but may indicate that 
the microbiome of a distressed patient more closely resembles that of a non-distressed patient, 
where both present with high microbial diversity. This may be because a combination of both 
depression and fatigue may negate the associations of one variable alone. Alternatively, 

FIG. 4 Relative abundances 
of bacterial phyla are similar 
for both patient statuses. The 
most abundant bacterial phyla 
were identified for distressed 
(n=12) and non-distressed 
(n=14) patients. Bars are 
grouped by patient status and 
labelled with individual sample 
IDs. 
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Parkinson’s disease was previously reported to have an association with changes in gut 
microbiome composition (40). Therefore, depression and fatigue may not be as strongly 
associated with microbiome diversity compared to Parkinson's disease. However, we would 
need to conduct a follow-up study comparing control patients without PD with our current 
PD model to confirm these results.  

Taxonomic Differences between distressed and non-distressed PD patients. We 
found Romboutsia and Erysipelatoclostridium were indicator genera for distressed patients 
and Parasutterella was an indicator genus for non-distressed patients. Previous studies have 
found Romboutsia to be more abundant in children with autism (41), demonstrating an impact 
on the brain similar to the neurological impacts of depression and fatigue. 
Erysipelatoclostridium produces the gut metabolite ptilosteroid A, which was enriched in 
patients with radio-induced intestinal injury (42). This suggests a link between the genus and 
gut dysbiosis, which is associated with PD. This genus has also been associated with injury 
to the gut epithelium.  Comparably, Parasutterella is found in higher levels in healthy patients 
compared to those with social anxiety disorders (43). This implies Parasutterella may have 
protective effects against mental health conditions like PD.  

Looking at the phyla level, both indicator species belong to the Firmicutes phyla. This is 
one of the highly abundant phyla observed in Fig. 4 which indicates the prevalence of these 
types of bacteria in the gut microbiota. Previous studies have found that two dominant phyla, 
Firmicutes and Bacteroidetes, represent over 90% of the gut microbiota (44). A study 
conducted by Hou et al. in 2018 on mice found that depletion of the Firmicutes phyla in gut 
microbiota was associated with elevated levels of the Osteocalcin protein (45). When injected 
into the PD mice, the Osteocalcin protein has shown to effectively ameliorate motor defects 
and neuronal loss (45). The elevation of Firmicutes phyla found in distressed patients in our 
study may indicate decreased levels of Osteocalcin protein equivalents in gut microbiota. This 
has neurodegenerative implications, which may explain the mental health symptoms of 
distressed subjects. Additionally, the Proteobacteria phylum, which makes up a minor 
proportion of the PD gut microbiota, has been linked with inflammatory bowel disease due 
to accumulation of common proinflammatory interleukins (46). Mouse studies have further 
found positive correlations of Proteobacteria abundance to colitis, and Crohn’s disease (47). 
Despite this, the abundance of Proteobacteria has not been evidenced to affect the brain or 
nervous system. This is in line with non-distressed patients who do not report mental health 
issues such as depression and fatigue which were studied in this experiment. Further analysis 
of non-distressed patients may indicate that they do in fact report other symptoms related to 
inflammation, however that is beyond the scope of this study.  

 
Limitations Several limitations restricted the scope and results of our study. One factor is the 
origin of the metadata used in our analysis. The original metadata was collected for the 
purpose of supplementing the Cirstea et al. study (37) and was not used as a main focus for 
their investigation. The metadata only allowed for correlation studies, as this paper has done, 
by looking at the correlations between patients’ mental status, and does not allow 
investigation into causation. Another limitation was the fact that the metadata had more male 
patients than female, which was not accounted for in our study. This is also true for other 
variables in the dataset which were not accounted for in our analyses, some of which may 
have acted as confounding variables. This limits the ability to establish a causal link between 
microbial composition and patient status. Additionally, this study was limited by a small 
sample size which limits the generalizability of findings. Finally, BDI (15) and FSS (16) 
scores come from patient self-reports, so they may not accurately represent patients’ 
conditions due to a self-reporting bias. 
 
Conclusions The aim of this study was to investigate the combined effect of depression and 
fatigue on the gut microbial composition of Parkinson’s Disease patients. A combined effect 
of depression and fatigue was defined as distressed and non-distressed patient status. Our 
study found that depression and fatigue scores were weakly correlated. Alpha and beta 
diversity analytics revealed no difference in gut microbiome diversity between PD patients 
who are distressed and non-distressed. Similarly, the abundance of bacterial phyla was 
generally similar between distressed and non-distressed PD groups. However, using the 
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indicator species analysis output, we found three indicator genera, Romboutsia, 
Erysipelatoclostridium and Parasutterella that were differentially abundant between 
distressed and non-distressed PD patients. These findings confirm our hypothesis that there 
are differences in the gut microbiota of patients who report fatigue and depression at high 
levels.  
 
Future Directions We suggest repeating the analyses to include control patients who are 
distressed and non-distressed. These subsets of sample patients do not have PD but are 
distressed or non-distressed. This analysis will allow us to compare distressed and non-
distressed status between PD and control patients, which may reveal new relationships. 
Alternatively, we suggest a repeat analysis of the association between depression and fatigue 
in PD patients, along with a third variable like a mental health disorder (e.g., anxiety) or 
specific patient factors (e.g., sex, age of disease onset). Previous studies report that the risk 
of developing PD is twice as high in men than women, however women have faster 
progression and higher mortality rates (48). The female sex is also associated with more 
severe anxiety and profound depression (48), hence the relationship between distressed 
conditions and patient sex could be a new direction for study. 

Another future direction would be to carry out a differential abundance analysis on 
significant bacterial genera like Romboutsia, Erysipelatoclostridium, and Parasutterella to 
determine if patient status affects the relative abundance of genera in the gut microbiome of 
PD patients. Additionally, we suggest performing data collection on a new group of PD 
patients with additional categories (e.g., bipolar disorder, patient history). A new data set can 
allow for a wider and more even distribution of depression and fatigue among patients, a 
repeat analysis with a larger sample size, and new variables to examine novel relationships. 
If the new data set allows, devising a new binning strategy that more closely aligns with the 
BDI (15) and FSS scales (16) is another future direction. Using this approach, distressed 
patients will have severe depression defined by the BDI (15) and severe fatigue defined by 
the FSS (16), rather than high depression and high fatigue relative to available samples.  

Specifying the type of depression (major depressive disorder, persistent depressive 
disorder, depressive disorder due to another medical condition, etc.) (49), can allow for a 
more specific hypothesis to test for differences in microbiome diversity in specific distressed 
and non-distressed PD patients. 
 
 
ACKNOWLEDGEMENTS  

We would like to thank Dr. Evelyn Sun, Dr. Melissa Chen, Bretta McCall and the rest of the 
MICB 475 teaching team for providing support and feedback throughout our project. We also 
thank Cirstea et al. for providing the metadata used in this study. As well, we would like to 
thank the Department of Microbiology and Immunology at the University of British 
Columbia for providing the facilities, funding, and resources needed to conduct this study. 
We would also like to thank team 7 for collaborating with us.  
 
CONTRIBUTIONS 
Each team member was an integral part of this study. The contributions of each team member are as 
follows. All authors contributed to the background research, planning, and design of this study. S.Z. 
conducted the analyses in QIIME2, and E.D., K.D., and S.R. conducted the analyses in R. The abstract 
was written by S.Z., introduction by S.R. and S.Z., methods by E.D. and S.Z., results by K.D. and S.R., 
limitations by S.R. and S.Z., conclusion by K.D. and S.Z., and future directions by K.D. The discussion 
was co-written by all four authors. All members were involved in the editing of this manuscript. Co-
authorship should be considered equal for all team members. 
 

REFERENCES

1. Shen T, Yue Y, He T, Huang C, Qu B, Lv W, Lai HY. 2021. The Association Between the Gut 
Microbiota and Parkinson's Disease, a Meta-Analysis. Front. Aging. Neurosci 13:636545. 

2. Hou YF, Shan C, Zhuang SY, Zhuang QQ, Ghosh A, Zhu KC, Kong XK, Wang SM, Gong YL, 
Yang YY, Tao B, Sun LH, Zhao HY, Guo XZ, Wang WQ, Ning G, Gu YY, Li ST, Liu JM. 
2021. Gut microbiota-derived propionate mediates the neuroprotective effect of osteocalcin in a 
mouse model of Parkinson's disease. Microbiome 9:34. 



UJEMI Dhaliwal et al. 

September 2023   Vol. 28:1-11 Undergraduate Research Article • Not refereed https://jemi.microbiology.ubc.ca/ 9 

3. Statistics. Parkinson's Foundation. https://www.parkinson.org/Understanding- 
Parkinsons/Statistics?utm_source=google&utm_medium=adgrant&utm_campaign=&utm_term=&g
clid=CjwKCAjw9e6SBhB2EiwA5myr9gLJZl7fO1XygmMWQ8qan7BwgTDrH63ve9naLIO9knw6
3XKDw-55YxoC5NoQAvD_BwE 

4. Alves, G., Wentzel-Larsen, T., & Larsen, J. P. 2004. Is fatigue an independent and persistent 
symptom in patients with Parkinson disease?. Neurology. 63(10): 1908–1911. 

5. Rathour, D., Shah, S., Khan, S., Singh, P. K., Srivastava, S., Singh, S. B., & Khatri, D. K. 2023. 
Role of gut microbiota in depression: Understanding molecular pathways, recent research, and future 
direction.Behav. Brain Res. 436, 114081. 

6. Limbana, T., Khan, F., & Eskander, N. 2020. Gut Microbiome and Depression: How Microbes 
Affect the Way We Think. Cureus. 12(8). 

7. Boolani A, Gallivan KM, Ondrak KS, Christopher CJ, Castro HF, Campagna SR, Taylor CM, 
Luo M, Dowd SE, Smith ML, Byerley LO. 2022. Trait energy and fatigue may be connected to gut 
bacteria among young physically active adults: An exploratory study. Nutrients. 14:466. 

8. Hajjar J, Mendoza T, Zhang L, Fu S, Piha-Paul SA, Hong DS, Janku F, Karp DD, Ballhausen 
A, Gong J, Zarifa A, Peterson CB, Meric-Bernstam F, Jenq R, Naing A. 2021. Associations 
between the gut microbiome and fatigue in cancer patients. Sci. Rep. 11(1):5847. 

9. König RS, Albrich WC, Kahlert CR, Bahr LS, Löber U, Vernazza P, Scheibenbogen C, 
Forslund SK. 2022. The gut microbiome in Myalgic Encephalomyelitis (me)/chronic fatigue 
syndrome (CFS). Front. Immunol. 12. 

10.  Kostić VS, Tomić A, Ječmenica-Lukić M. 2016. The pathophysiology of fatigue in parkinson's 
disease and its pragmatic management. Mov. Disord. Clin. Pract. 3:323–330. 

11. Lin I, Edison B, Mantri S, Albert S, Daeschler M, Kopil C, Marras C, Chahine LM. 2021. 
Triggers and alleviating factors for fatigue in parkinson’s disease. PLoS One. 16. 

12. Li Z, Lu G, Luo E, Wu B, Li Z, Guo J, Xia Z, Zheng C, Su Q, Zeng Y, Chan WY, Su X, Qiu X, 
Zheng X, Cai Q, Xu Y, Chen Y, Fan Y, Chen W, Yu Z, Chen X, Zheng C, Wang M, Poon WS, 
Luo X. 2022. Oral, nasal, and gut microbiota in parkinson’s disease. Neurosci. J. 480:65–78. 

13. Lubomski M, Tan AH, Lim S-Y, Holmes AJ, Davis RL, Sue CM. 2019. Parkinson’s disease and 
the gastrointestinal microbiome. J. Neurol. 267:2507–2523. 

14. Dinan TG, Cryan JF. 2017. Gut Feelings on Parkinson's and Depression. Cerebrum. cer-04-17. 
15. Jackson-Koku G. 2016. Beck Depression Inventory. Occup Med (Lond) 66(2):174-5. 
16. Valko PO, Bassetti CL, Bloch KE, Held U, Baumann CR. 2008. Validation of the fatigue severity 

scale in a Swiss cohort. Sleep. 31(11):1601-7. 
17. Wickham H. 2016. In Gentleman R, Hornik K, Parmigiani G (ed), ggplot2: Elegant graphics for 

data analysis, 2nd ed. Springer-Verlag, New York, NY. 
18. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith G, Alexander H, 

Alm,EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, 
Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, 
Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, 
Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann 
B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, 
Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, 
Kreps J, Langille MGI, Lee J, Ley R, Liu Y, Loftfield E, Lozupone C, Maher M, Marotz C, 
Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, 
Naimey AT, Navas-Molina J, Nothias LF, Orchanian SB,Pearson T, Peoples L, Petras D, 
Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer 
M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, 
Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, 
Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, 532 Weber KC, 
Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG. 
2019. Reproducible, interactive, scalable and extensiblemicrobiome data science using QIIME 2. Nat 
Biotechnol 37:852-857. 

19. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: 
High‐resolution sample inference from Illumina amplicon data. Nat Methods13:581‐ 537 583. 

20. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. 
The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. 

21. Allen B, Kon M, Bar-Yam Y. 2009. A new phylogenetic diversity measure generalizing the 
shannon index and its application to phyllostomid bats. Am Nat. 174(2):236-43. 

22. Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biol Cons. 61:1‐10. 
23. Lozupone CA, Hamady M, Kelley ST, Knight R. 2007. Quantitative and qualitative beta diversity 

measures lead to different insights into factors that structure microbial communities. Appl Environ 
Microbiol. 73:1576‐1585. 

24. Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for comparing microbial 
communities. Appl Environ Microbiol.71:8228‐8235. 

25. Chao A, Chiu C-H, Hsieh TC. 2012 Proposing a resolution to debates on diversity partitioning. 
Ecology, 39, 2037–2051. 

26. Baselga A. 2013. Separating the two components of abundance-based dissimilarity: balanced 
changes in abundance vs. abundance gradients (ed R Freckleton). Methods in Ecology and 
Evolution. 4, 552-557. 



UJEMI Dhaliwal et al. 

September 2023   Vol. 28:1-11 Undergraduate Research Article • Not refereed https://jemi.microbiology.ubc.ca/ 10 

27. Gower, JC. 1966. Some distance properties of latent root and vector methods used in multivariate 
analysis. Biometrika, 53, 325–338. 

28. R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. Available from: https://www.r-project.org/ 

29. McMurdie PJ, Holmes S. 2013. phyloseq: An R package for reproducible interactive analysis and 
graphics of microbiome census data. PLOS ONE.8:e61217. 

30. Paradis E, Schliep K. 2019. Ape 5.0: An environment for modern phylogenetics and evolutionary 
analyses in R. Bioinformatics. 35:526–528. 

31. Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes 
A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, 
Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. 2019. 
Welcome to the Tidyverse. J Open Source Softw. 4:1686. 

32. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara 
RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2020. vegan: community 
ecology package. R package version 2.5-7. Available from: https://cran.r/project.org/package=vegan 

33. De Caceres M, Legendre P. 2009. Associations between species and groups of sites:indices and 
statistical inference. http://sites.google.com/site/miqueldecaceres/. 

34. Moutsambote JM, Koubouana F, Yoka J, Ndzai SF, Bouetou-Kadilamio LNO, Mampouya H, 
Jourdain C, Bocko Y, Mantota AB, Mbemba M, Mouanga-Sokath D, Odende R, Mondzali LR, 
Wenina YEM, Ouissika BC, Joel LJ. 2016. Tree Species Diversity, Richness, and Similarity in 
Intact and Degraded Forest in the Tropical Rainforest of the Congo Basin: Case of the Forest of 
Likouala in the Republic of Congo. Int. J. For. Res 

35. Ortiz-Burgos S. Shannon-weaver diversity index. 2016. Shannon-Weaver Diversity Index. 
Encycl. estuaries. 2016:572-3. 

36. Santos-García D, de Deus Fonticoba T, Suárez Castro E, Aneiros Díaz A, Cores Bartolomé C, 
Feal Panceiras MJ, Paz González JM, Valdés Aymerich L, García Moreno JM, Blázquez 
Estrada M, Jesús S, Mir P, Aguilar M, Planellas LL, García Caldentey J, Caballol N, Legarda 
I, Cabo López I, López Manzanares L, Ávila Rivera MA, Catalán MJ, López Díaz LM, Borrué 
C, Álvarez Sauco M, Vela L, Cubo E, Martínez Castrillo JC, Sánchez Alonso P, Alonso Losada 
MG, López Ariztegui N, Gastón I, Pascual-Sedano B, Seijo M, Ruíz Martínez J, Valero C, 
Kurtis M, González Ardura J, Prieto Jurczynska C, Martinez-Martin P. 2020. Quality of life 
and non-motor symptoms in Parkinson's disease patients with subthreshold depression. J Neurol Sci 
418:117109. 

37. Cirstea, MS, Yu, AC, Golz, E, Sundvick, K, Kliger, D, Radisavljevic, N, Foulger, LH, 
Mackenzie, M, Huan, T, Finlay, BB, Appel Cresswell, S. 2020. Microbiota composition and 
metabolism are associated with gut function in parkinson's disease. Mov. Disord. 35(7):1208-1217. 

38. Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P. 2023. Gut microbiota and its metabolites in 
depression: from pathogenesis to treatment. EBioMedicine 90:104527. 

39. Radjabzadeh D, Bosch JA, Uitterlinden AG, Zwinderman AH, Ikram MA, van Meurs JBJ, 
Luik AI, Nieuwdorp M, Lok A, van Duijn CM, Kraaij R, Amin N. 2022. Gut microbiome-wide 
association study of depressive symptoms. Nat Commun 13(1):7128. 

40. Lubomski M, Xu X, Holmes AJ, Muller S, Yang JYH, Davis RL, Sue CM. 2022. The Gut 
Microbiome in Parkinson's Disease: A Longitudinal Study of the Impacts on Disease Progression 
and the Use of Device-Assisted Therapies. Front Aging Neurosci 14:875261. 

41. Yap CX, Henders AK, Alvares GA, Wood DLA, Krause L, Tyson GW, Restuadi R, Wallace L, 
McLaren T, Hansell NK, Cleary D, Grove R, Hafekost C, Harun A, Holdsworth H, Jellett R, 
Khan F, Lawson LP, Leslie J, Frenk ML, Masi A, Mathew NE, Muniandy M, Nothard M, 
Miller JL, Nunn L, Holtmann G, Strike LT, de Zubicaray GI, Thompson PM, McMahon KL, 
Wright MJ, Visscher PM, Dawson PA, Dissanayake C, Eapen V, Heussler HS, McRae AF, 
Whitehouse AJO, Wray NR, Gratten J. 2021. Autism-related dietary preferences mediate autism-
gut microbiome associations. Cell 184(24):5916-5931. 

42. Cai S, Yang Y, Kong Y, Guo Q, Xu Y, Xing P, Sun Y, Qian J, Xu R, Xie L, Hu Y, Wang M, Li 
M, Tian Y, Mao W. 2022. Gut Bacteria Erysipelatoclostridium and Its Related Metabolite 
Ptilosteroid A Could Predict Radiation-Induced Intestinal Injury. Front Public Health 10:862598. 

43. Butler MI, Bastiaanssen TFS, Long-Smith C, Morkl S, Berding K, Ritz NL, Strain C, Patangia 
D, Patel S, Stanton C, O'Mahony SM, Cryan JF, Clarke G, Dinan TG. 2023. The gut 
microbiome in social anxiety disorder: evidence of altered composition and function. Transl 
Psychiatry 13(1):95. 

44. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, 
Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, 
Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, 
Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, 
Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J; 
MetaHIT Consortium; Antolín M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara 
C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de 
Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, 
Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Mérieux A, Melo Minardi R, M'rini C, 
Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, 



UJEMI Dhaliwal et al. 

September 2023   Vol. 28:1-11 Undergraduate Research Article • Not refereed https://jemi.microbiology.ubc.ca/ 11 

Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich 
SD, Bork P. 2011. Enterotypes of the human gut microbiome  Nature 473(7346):174-80. 

45. Hou YF, Shan C, Zhuang SY, Zhuang QQ, Ghosh A, Zhu KC, Kong XK, Wang SM, Gong YL, 
Yang YY, Tao B, Sun LH, Zhao HY, Guo XZ, Wang WQ, Ning G, Gu YY, Li ST, Liu JM. 
2021. Gut microbiota-derived propionate mediates the neuroprotective effect of osteocalcin in a 
mouse model of Parkinson's disease. Microbiome 9(1):34. 

46. Matsuoka K, Kanai T. 2015. The gut microbiota and inflammatory bowel disease. Semin 
Immunopathol (1):47-55. 

47. Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. Proteobacteria: A Common 
Factor in Human Diseases. 2017. Biomed Res Int 2017:9351507. 

48. Cerri S, Mus L, Blandini F. Parkinson's Disease in Women and Men: What's the Difference? 
2019. J Parkinsons Dis. 9(3):501-515. 

49. Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF. 
2016. Major depressive disorder. Nat Rev Dis Primers 2:16065. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


