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SUMMARY   Inflammation is a biological response typically indicative of a diseased state, 
and long-term inflammation is also potentially pathological. Recent studies have highlighted 
the important relationship between the gut microbiota and inflammation in the human body, 
identifying a potential avenue of new therapeutics. However, this relationship remains to be 
comprehensively explored in infants. As such, the objective of this study is to investigate the 
relationship between gut microbial composition and inflammation in 6 and 12 month old 
infants. In this study, inflammation markers C-reactive protein and α1-acid glycoprotein were 
used to examine the overall diversity differences as well as taxonomic changes between 
infants with high and low inflammation levels. It was found that overall diversity of infants 
is not significantly impacted by inflammation levels in both 6 and 12 month old infants. By 
contrast, taxonomic changes reflect an increasing association of specific taxa with 
inflammation levels as infants age from 6 to 12 months old. These results suggest a potential 
age-related correlation between the gut microbiome of infants and inflammation status. 
Overall, this study demonstrates the need to pursue further research in this area to allow for 
the development of potential early diagnostic tools vital for early intervention and treatment 
for inflammation in infants. 
 
INTRODUCTION 

nlike most adults, infants have an underdeveloped gut microbiome and an immature 
immune system (1). When an infant is born, microbial colonizers that initially settle in 
the gut originate from the mother’s vaginal microbiome (1). During their early years, 

infants are exposed to different factors that affect microbial composition and diversity in the 
gut, such as varying feeding patterns and antibiotic and environmental exposures (1). These 
exposures also influence the development of an infant’s immune responses against pathogens 
particularly in the mucosal tissues as the establishment of host-microbiota symbiosis helps in 
the maturation of the immune system (2). When an infant reaches an age of approximately 2 
to 3 years, a set of microbial taxa is established in their gut, and they eventually develop an 
adult-like gut microbiome (3). Importantly, while the majority of microorganisms in the 
human gut are non-pathogenic and play an integral role in metabolism and intestinal barrier 
function (4,5), several studies have also successfully linked dysbiosis, the disruption of the 
gut microbiota, with inflammatory diseases including Crohn’s disease, irritable bowel 
syndrome, and allergic asthma (6-8). Nevertheless, understanding of the exact relationship 
between the gut microbiota and inflammatory disease progression is still not robust (7,8). 

Inflammation is a defense mechanism typically activated in response to harmful stimuli 
and supports the survival and homeostasis of tissues upon infection or injury (9). Nonetheless, 
long-term inflammation leads to reduced tissue function and possible disease states when 
improperly managed (9). While the exact inflammatory response can vary depending on the 
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location and type of stimuli, inflammation processes frequently share inflammatory markers 
as a common mechanism to recruit inflammatory cells, and these biomarkers can be measured 
to predict inflammation levels (10-13). Specifically, acute-phase proteins C-reactive protein 
(CRP) and α1-acid glycoprotein (AGP) are often used clinically as markers of inflammation 
(13,14).  

CRP is a protein synthesized in the liver typically found at concentrations < 10 mg/L but 
will rapidly rise and can peak within 48 hours of initiating an inflammatory disease state (14).  
AGP is a plasma protein that complements CRP as an inflammatory biomarker; while CRP 
rises and falls rapidly in response to stimuli, AGP levels change more gradually, reflective of 
recovery or long-term inflammation (12,14,15). Investigation of the relationship between gut 
microbiota composition and inflammation may lead to new early diagnostic tools to address 
inflammatory diseases in infants. 

Studies on the relationship between the gut microbiome and inflammation are limited and 
conflicting. Research in animal models and of non-infant humans have noted that gut 
dysbiosis can lead to changes in intestinal barrier permeability and can cause low grade 
inflammation, indicating that inflammation in infants may be correlated to a different 
microbiome composition (16). Nevertheless, a similar study by Kamng’ona et al. notes that 
although microbiota diversity may be linked to inflammation, their findings were overall 
inconsistent (17). The absence of consistent results highlights the necessity of more in-depth 
studies on infant microbiomes and the importance of this research as a contribution to the 
field. This study aims to investigate the relationship between the gut microbiome and 
inflammation in infants. CRP and AGP serum concentrations and fecal microbiome sample 
data from McClorry et al. were analyzed to assess the difference in gut microbial composition 
correlating to the presence or absence of inflammation at two different timepoints: 6 months 
and 12 months. The results of this study will address the knowledge gap in infant microbiome 
studies by elucidating the potential role of the microbiome as an early diagnostic tool to assess 
infant health (18). 

 
 
METHODS AND MATERIALS 

Dataset used in this study. The ‘Anemia in Infancy’ dataset was downloaded from the 
European Nucleotide Archive (accession: ERP104978) (18) and was originally published by 
McClorry et al. (18). The subjects analyzed included 82 non-anemic 6 and 12 months old 
infants used as controls in the original study (18). Subjects were residents of Moronacocha, 
Iquitos, Loreto and recruited at the Moronacocha Health Center in Iquitos, Peru. Fecal 
samples underwent 16S ribosomal RNA sequencing. The V4 region of the 16S ribosomal 
RNA was amplified using polymerase chain reaction (PCR) and the F515-R806 primer pair. 
Sequencing was completed by the University of California, Davis, Genome Center (DNA 
Technologies Core) with the Illumina MiSeq platform (Illumina). Venous blood samples 
were collected without anticoagulants and stool samples were collected by caregivers from 
diapers at home. Blood serum samples were shipped to the laboratory of Jurgen Erhardt for 
assessment of a range of serum biomarkers, including C-reactive protein and α1-acid 
glycoprotein. 
 
Initial data processing using the Quantitative Insights into Microbial Ecology 2 
(QIIME2) pipeline. Raw 16S ribosomal RNA (rRNA) sequences were imported using a 
manifest file and demultiplexed using the bioinformatics tool QIIME2 (v2021.11) (19). For 
quality control purposes, a denoising step was performed on the demultiplexed sequences 
using the Divisive Amplicon Denoising Algorithm 2 (DADA2) (20) pipeline, in which the 
sequences were truncated to a length of 250 bp, and low-quality reads were removed. After 
denoising, sequences were clustered into amplicon sequence variants (ASVs), and a table 
showing relative frequencies and number of reads of the ASVs per sample was generated. 
Taxonomic classification was conducted on the ASVs using a Naïve Bayes classifier trained 
after alignment with the SILVA database (SILVA 138 SSU Ref NR 99) (21,22). Multiple 
sequence alignments by the Multiple Alignment using Fast Fourier Transform (MAFFT) (23) 
program were performed to create a rooted phylogenetic tree required for further downstream 
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analyses (Figure 1). Non-bacterial ASVs were filtered out from the samples by excluding taxa 
that do not have chloroplasts or mitochondria. 

The samples were further filtered to include only healthy infants with no anemia and no 
parasites in 6-month-old and 12-month-old cohorts. The ASV table, taxonomy file, and rooted 
tree were exported from QIIME2 into RStudio for downstream analysis. The QIIME2 
workflow that mentions specific tools used in this processing step is detailed in the QIIME2 
script. 

 

Initial data binning and processing using RStudio. The original dataset was first filtered 
to remove infants with anemia or parasitic infections, and all other infants were classified as 
healthy. This metadata was then separated into 6 and 12 month age groups, which were then 
further divided based on inflammation biomarker levels. AGP and CRP serum concentrations 
were classified as high or low whether they were above or below the clinical guidelines (1 
g/L for AGP and 5 mg/L for CRP) or the median serum concentration across all healthy 
infants within the given age category, respectively. A phyloseq object was then created using 
the phyloseq package (v1.42.0) (24) for each age group using the metadata from McClorry et 
al.’s study, the exported ASV table, taxonomy file, and rooted tree from the QIIME2 pipeline. 
Further filtering was applied to remove non-bacterial sequences, ASVs with less than 5 total 
counts, samples with less than 100 reads, and samples with no CRP/ AGP level.  
 
Alpha and beta diversity analysis. Each phyloseq object was rarefied on RStudio at a depth 
of 15000 sequences per sample to maximize sample richness and to preserve enough samples 
for further analyses. Alpha and beta diversity metrics were produced with the following R 
packages in R: tidyverse (v1.3.2) (25), vegan (v2.6-4) (26), phyloseq (v1.42.0) (24), ggplot2 
(v3.4.1) (27), and ggsignif (v0.6.4) (28). For each cohort, Shannon alpha diversity and beta 
diversity metrics were calculated and statistical significance (p<0.05) was determined using 
the Wilcoxen rank sum test and Permutational Analysis of Variance (PERMANOVA). 
Clustering was completed at a 95% confidence interval. 
 
Differential abundance analysis. To conduct the differential abundance analysis (DESeq2) 
on AGP and CRP groupings on two timepoints of 6 months and 12 months, the following R 
packages were used: tidyverse (v1.3.2) (25), vegan (v2.6-4)(26), phyloseq (v1.42.0)(24), 
ggplot2 (v3.4.1) (27), ape (v.5.7) (29), and DESeq2 (v1.34.0) (30). From the non-rarefied 
phyloseq object, the samples were manipulated to add 1 read pseudocount to achieve 
minimum nonzero values. Where the log2FoldChange ratio of either AGP or CRP was 
High/Low, statistical significance was defined as an adjusted p-value of < 0.05, and only 
significant ASVs that had a log2FoldChange greater than 2 were retained. The ASVs were 
mapped to their genus taxonomic level for ease of interpretation, and the results were plotted 
using a matrix to include both timepoints for each panel in Figure 5.  
 
Indicator species analysis (ISA). To further elucidate on the differences in the gut 
microbiome composition between infants with and without inflammation at 6 months and 12 
months of age, an indicator taxa analysis was performed in RStudio. The R packages used in 
this analysis were dplyr (v1.1.0) (31), phyloseq (v1.38.0) (24), and indicspecies (v1.7.12) 
(32). Using the phyloseq object, ASVs were agglomerated to the genus level, and bacterial 
counts were converted into relative abundance. Then, the indicator taxa were determined 
using the multipatt function, which identifies genera that are particularly prevalent/abundant 

FIG. 1 The workflow for this project was designed to address three different goals. Data preparation, filtering, 
and binning (red) were conducted prior to diversity analysis (yellow) and individual taxa changes between 
conditions (red). Created with BioRender.com. 
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in one or more groups with a p-value of < 0.05. A detailed outline of the methodology of this 
analysis can be seen in AGP master and CRP master scripts. 
 
Core microbiome analysis. To determine the shared taxa between different groups in each 
cohort, a core microbiome analysis was performed. In each age bracket, detection and 
prevalence parameters were set to 0 and 0.80 respectively to account for the small sample 
size of the study. R packages tidyverse (v1.1.0) (25), phyloseq (v1.38.0) (24), and 
microbiome (v1.16.0) (33,37) were used to conduct the analysis, while ggVennDiagram 
(v1.2.2) (34), ggeasy (v0.1.4) (27), RColorBrewer (v1.1.3)(35), and ggpubr (v0.6.0) (36) 
were used to create a four-way Venn diagram visualizing the core taxa for each age group. 
The core microbiome workflow indicating specific functions used is presented in the Core 
Microbiome script. 
 
Relative abundance. Relative abundance plots were generated using RStudio for both 
Indicator Species Analysis and DESeq2 significant results independently. Bacterial count 
data were transformed to relative abundance using transform() within the microbiome R 
package (v1.16.0) (33,37) and filtered to only include significant indicator taxa (p<0.05). A 
pseudocount equal to the minimum nonzero abundance value was added to all abundances to 
improve plot readability. Statistical analysis was performed using the Wilcoxen rank sum test 
under the function stat_means_compare in the ggpubr package (36). 
 
RESULTS 

6 and 12 month infant cohort data was binned according to CRP and AGP levels 
independently. Metadata for 77 infants was organized into age groups, where there were 46 
infants at 6 months, and 31 infants at 12 months of age (Figure 2). For both age groups, AGP 
levels were classified as high or low according to the clinically significant serum 
concentration seen in inflammation, which was 1 mg/L. Binning based on AGP classification 
resulted in four bins, including 6 month high AGP (10 infants), 6 month low AGP (36 infants), 
12 month high AGP (14 infants), and 12 month low AGP (17 infants), as shown in Figure 2. 
Classifying the data according to the clinical CRP serum concentration (5 g/L), however, had 
very few infants with high CRP levels in both age groups. As a result, the median of the CRP 
serum concentrations for each age group were used to allow for large enough groups. The 
median concentrations were then implemented into classification, such that 6 month and 12 
month thresholds for high CRP were > 0.50 g/L and ≥ 0.95 g/L, respectively. Binning based 
on CRP classification were 6 month high CRP (23 infants), 6 month low CRP (23 infants), 
12 month high CRP (15 infants), and 12 month low CRP (16 infants) (Figure 2).  

 

FIG. 2 Infant metadata was filtered and binned according to age and levels of the inflammatory 
markers. Healthy infant data were categorized into low and high CRP using an identified threshold 
for 6 month (0.50 mg/L) and 12 month (0.95 mg/L) age groups. Data for each age group was also 
categorized into low or high AGP using the clinical threshold concentration for inflammation (1 g/L).  
Infants with parasites were discarded. 
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Overall diversity of the gut microbiome does not show significant correlation to 
inflammation in infants between 6 and 12 months old. To explore how inflammation 
contributed to gut microbiome diversity in 6 and 12-month-old infants, we evaluated alpha 
diversity using Shannon’s diversity index, a measure of community richness and abundance. 
With the AGP markers, results showed p values of 0.5274 and 0.9263 for 6 and 12 months 
old infants respectively, indicating that there was no significant difference in evenness and 
abundance of gut microbial composition between the low and high inflammation conditions 
(Figure 3a,c). Alpha diversity analysis of infants binned using CRP reflected similar results 
of insignificance (Figure 3b,d) where p = 0.6915 for 6 months old infants and p = 0.1781 for 
12 months old infants. These trends of non-significance were further continued in beta 
diversity analysis as there were no obvious clustering patterns related to inflammation level 
for any of the cohorts (Figure S1, Table S2).     

 

FIG. 3 Alpha diversity of infants is not significantly different between high and low inflammation levels. 
Boxplot visualization of Shannon diversity analysis correlating inflammation levels in infants and diversity 
within the cohort a) Comparison of 6 months old infants with high or low AGP levels b) Comparison of 6 
months old infants with high or low CRP levels c) Comparison of 12 months old infants with high or low AGP 
levels d) Comparison of 12 months old infants with high or low CRP levels. 
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Core microbiome analysis shows an increase in the core taxa in infants from 6 to 12 
months of age. Upon conducting core microbiome analysis on the 6-month and 12-month 
age groups, a higher number of shared taxa was observed in the 12-month-old infants (Figure 
4). One taxon that is consistent in all groups in both age brackets is Bifidobacterium, which 
is a common genus in the infant gut. We further explored the ASV and performed a BLAST 
search, after which it was found that the ASV may be Bifidobacterium longum or 
Bifidobacterium breve, which are species that are known as ‘infant-type’ bacteria that 
dominate the infant gut in its early years (38). More taxa unique to specific groups were also 
observed at 12 months (Figure 4b) compared to 6 months of age (Figure 4a). We found 
Actinomyces, Streptococcus, Anaerostipes, and Clostridium innocuum, in infants with high 
CRP, low CRP, high AGP, and low AGP levels, respectively.  

 

More differentially abundant taxa is found in 12 month old vs 6 month old infants 
for both CRP and AGP cohorts. DESeq2 analysis was conducted to compare the 
differentially abundant taxa at the genus level between 6-month and 12-month-old infants 
using the stratified AGP and CRP cohorts (Figure 5). It was observed that a higher number 
of significant, differentially abundant genera was found in the 12-month-old infants when 
compared to the 6-month-old infants for both CRP and AGP groups. Specifically, the large 
increase of differentially abundant genera was found to be primarily associated with the 
‘High’ level of CRP, and for both the ‘High’ and ‘Low’ levels of AGP. 

Indicator species analysis identified more genera that are prevalent/abundant in 12-
month-old infants than in the 6-month cohort. After conducting an indicator species 
analysis in each group per age bracket, only the ‘High AGP’ group was found to have genera 
that are indicative of its inflammatory condition in 6-month-old infants (Table 1). In contrast, 
all four groups in the 12-month cohort were observed to have indicator taxa.  

Relative abundance shows more consistent results with DESeq2 and ISA in 12 
months than 6 months. Relative abundance analysis of the seven significant indicator 
species elucidated how taxa were distributed for high and low inflammation biomarker levels. 
Both Coprococcus and Gemella showed increased relative abundance in high CRP conditions 
compared to low CRP in the 12-month age group (Figure 6b). Eubacterium eligens showed 
significantly increased relative abundance in high AGP conditions (Figure 6c). Conversely, 
Lachnospiraceae UCG-004 had significantly higher relative abundance in low AGP 
conditions. There were no significant changes in relative abundance in either CRP or AGP 
level comparisons in the 6-month age group (Figure 6a). 

Relative abundance was determined for all significant differentially expressed taxa found 
using DESeq2 (Figure 7). No significant taxa were identified when determining relative  

FIG. 4 An increase in the number of shared genera was observed in 12-month-old infants compared to 6-month-
old upon conducting core microbiome analysis. Infants at A) 6 months of age showed fewer taxa prevalent in one or 
more groups (high/low AGP and high/low CRP) than at B)12 months of age.   
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abundance for both CRP and AGP conditions in the 6-month age group (Figure 7a,b). 
Coprococcus showed increased relative abundance in 12-month infants with high CRP levels  
compared to low CRP (Figure 7c). This result was consistent with relative abundance analysis 
of indicator species (Table 1, Figure 6). Regarding AGP levels at 12 months of age, 
Erysipelotrichaceae UCG-003 showed higher abundance in infants with high AGP (Figure 
7d). ASVs of these genera were searched using BLAST, but was unsuccessful in providing 
any further information on the associated species.  
 

FIG. 5 Genera are more differentially abundant in 12 month infants when compared to 6 month old infants. 
Differential abundance analysis showing the log2fold change between different genera of the gut microbiome of infants 
at two different age timepoints, 12-months and 6-months. A positive log2foldchange value indicates greater abundance 
of a genus in the ‘High’ grouping while a negative log2foldchange value indicates a greater abundance of a genus in 
the ‘Low’ grouping of a) CRP and b) AGP respectively. Only statistical results of lower than 0.05 for adjusted p-value, 
and that had greater than 2 log2foldchange were included. The error bars correspond to the DESeq2 standard error. 
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FIG. 6 Relative abundance of some species identified using indicator species analysis are significant in 12 month 
infants.  Relative abundance plots were generated for results from indicator species analysis for 6 month infants with 
a) high vs low CRP, and 12 month infants with b) high vs low AGP and c) high vs low AGP. Plots were created using 
ggplot2 in RStudio. Statistics were performed using the Wilcoxen rank sum test.  * p ≤ 0.05, ** p ≤ 0.01, ns = not 
significant. 
 

FIG. 7 Relative abundance 
of species identified through 
DESeq2 was significant for 
Coprococcus and 
Erysipelotrichaceae UCG-
003 in 12 month infants.  
Relative abundance plots were 
generated for results from 
differential expression 
analysis for 6 month and 12 
month age groups. Plots were 
generated using 6 month data 
for relative abundance in a) 
high vs low CRP and b) high 
vs low AGP conditions. The 
12 month age group was 
plotted for b) high vs low 
AGP and c) high vs low AGP. 
Plots were created using 
ggplot2 in RStudio. The 
Wilcoxen rank sum test was 
used for statistical analysis. * 
p ≤ 0.05, ** p ≤ 0.01, ns = not 
significant. 
 



UJEMI+ Job et al. 

September 2023   Volume 9:1-15 Undergraduate Research Article https://jemi.microbiology.ubc.ca/ 9 

DISCUSSION 

Differences in inflammation levels have no significant effect on gut microbial diversity 
of 6 and 12-month-old infants (Figure 3, S1).  Interestingly, another study by Malawi et al. 
reported that microbial diversity was associated with high AGP at 6 months but not CRP (17). 
One possibility for this discrepancy is that AGP can be raised for different reasons; AGP is 
associated with both chronic inflammatory conditions and in individuals who have recently 
recovered from inflammatory conditions and are in the convalescent stage. While Malawi et 
al. does not specify if the infants from their study had chronic inflammation, the infants used 
in this study were healthy with no parasites, which may explain why AGP levels would not 
correlate with gut microbiome composition in our experiment (15). However, our study does 
corroborate Malawi et al.’s results for CRP; our experiment demonstrates that high CRP 
levels do not correspond to diversity changes in the gut microbiome. One possibility for this 
result is because our study stratified infants using CRP medians of 0.95 mg/L and 0.50 mg/L 
for 6-month-old and 12-month-old infants, respectively, both of which are noticeably lower 
than the clinical cut-off of 5 mg/L (13). Using the CRP median thresholds, many infants with 
high CRP were potentially only recently exposed to mild inflammation-inducing conditions 
or offending agents, so the inflammation level induced is subclinical, consequently resulting 
in non-significant data. 

Interestingly, although the gut microbiota in infants demonstrates healthy maturation 
overall, there were increasing taxonomic changes associated with inflammation from 6 to 12 
months old. Core microbiome analysis of 6 and 12-month-old infants show an increase in the 
genera shared by all infant cohorts regardless of inflammation level (Figure 4). Of the listed 
genera, Bifidobacterium was found in all cohorts and shared between 6 and 12-month-old 
infants (Table S2). Bifidobacterium is one of the genera that are drastically more abundant in 
infants than adults as they can utilize human milk oligosaccharides to produce short-chain 
fatty acids (SCFA) and is one of the most overrepresented bacterial genera in healthy infants, 
suggesting their importance in infant development (39,40). Specifically, SCFAs such as 
butyrate have been reported to have an anti-inflammatory impact in the gut by decreasing 
proinflammatory cytokine expression via inhibition of NFκB activation and IκBα degradation 
(41,42). Resultantly, Bifidobacterium dominance in infants has been linked to reduced 
colonization by organisms with antimicrobial genes, while its loss has been shown to increase 
the prevalence of obesity, diabetes, and metabolic disorders (43). As Bifidobacterium 
presence is primarily determined by consumption of milk, regardless if it is formula or breast 
milk, and has anti-inflammatory effects, we believe that diet may act as a confounding 
variable in the determination of the gut microbiome in infants with and without inflammation 
(39,44).  

This reasoning is further verified in the examination of the 12 months core microbiome 
(Table S2). Diversification of the infant gut microbiome at 12 months begins to reflect normal 
adult gut microbiomes with the addition of the Blautia, Streptococcus, and Ruminococcus 
gnavus from the Firmicutes phylum and the Bacteroides from the Bacteroidetes phylum (45-
47). Previous studies report that the introduction of Firmicutes and Bacteroidetes typically 
occurs with the introduction of solid food as bacteria in these phyla are able to digest plant 
polysaccharides and are also associated with omnivorous diets in various species (39,47-50). 
The overall impact of these new genera are varied. Bacteroides has been implicated in the 
modulation of obesity, inflammatory bowel disease (IBS), and neurodevelopment, while 
genera like Streptococcus are reported to downregulate pro-inflammatory activity in disease 
(51-54). Similarly, depletion of Blautia species has been associated with intestinal 
inflammation, while mouse model studies have demonstrated that the administration of 
certain Blautia species has been shown to reduce obesity and type 2 diabetes (55,56). By 
contrast, genera such as the R. gnavus can produce inflammatory polysaccharides implicated 
in inflammatory bowel diseases (57,58). The genera identified in the core microbiome 
analysis of 12-month-old infants are demonstrated to be associated with established trends 
expected of healthy infants transitioning from a milk diet to solid food rather than 
inflammation, further confirming infant diet as potential confounding variable in this study. 

Nonetheless, we begin to see a general trend where the infant gut microbiota is more 
influenced by inflammation levels at 12 months compared to 6 months (Figure 4,5). There 
were a greater number of ASVs mapped to genera that were differentially abundant in 12 
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months old infants when compared to 6-month-old infants for both of the CRP and AGP 
groups (Figure 5). The trend was prominent in the ‘High’ CRP and in both ‘Low’ and ‘High’ 
AGP groupings of the DESeq2 suggests that the strength of the relationship between the gut 
microbiome and systemic inflammation was consistent regardless of the inflammation 
marker, but instead depends primarily on time. The increase of differentially expressed genera 
in 12 months corroborates the literature in that the gut microbiota is maturing and establishing 
itself during the first 2 to 3 years of life, increasing the abundance of different genera present 
in that natural process (8). 

Furthermore, changes in relative abundance of Lachnospiraceae UCG-004 and Gemella 
also reflect the development of taxonomic trends in response to inflammation from 6 to 12 
months old. Lachnospiraceae UCG-004 was found to be most prevalent in low AGP 
conditions at 12 months (Figure 6). Lachnospiraceae is a family of butyrate-producing 
bacteria, which are known to help inhibit inflammation in the intestine (59,60). Lower relative 
abundance of certain Lachnospiraceae bacteria has been confirmed in cases of inflammatory 
diseases such as inflammatory bowel disease (IBD) (61) and colitis (62), in addition to 
metabolic diseases, liver disease, multiple sclerosis syndrome, and chronic kidney disease 
(63). Research involving the Lachnospiraceae UCG-004 genus specifically have also 
demonstrated similar findings, with decreased abundance in conditions involving 
inflammation including Parkinson’s disease (64,65), coronary artery disease (66), and 
diabetes (67).  

At 12 months, Gemella was found to be a significant taxon with increased relative 
abundance in inflammatory conditions of high CRP (Figure 6b). This is consistent with 
literature that has identified Gemella species, including Gemella morbidillorum and Gemella 
haemolysans, to be associated with several infections and diseases, such as cell carcinoma 
(68,69), sepsis (70), and endocarditis (71,72). Consequently, these opportunistic taxa support 
the results of the analyses performed in the 12 month cohort in this study.  

 However, several taxonomic changes in 6 and 12-month-old infant gut microbiota due 
to inflammation do not consistently reflect trends seen in literature.  Specifically, several of 
the significant relative abundance taxonomic changes do not reflect what other studies have 
demonstrated, including Coproccocus, Erysipelotrichaceae UCG-003, and Eubacterium 
eligens. While there is little information linking E. eligens to AGP, current evidence shows 
that it has an anti-inflammatory effect (74). E. eligens has been shown to have a negative 
correlation with inflammatory markers, including IL-2 and CRP (75). This suggests that the 
results for the relative abundance observed were not likely a direct correlate of inflammation, 
which prompts the necessity of further research in the field to clarify the inconsistencies 
between different literature sources. 

Coprococcus, which was significantly increased in high CRP conditions through both 
DESeq2 and indicator species analysis, is also known to have anti-inflammatory effects 
(Figure 6,7). Similar to Lachnospiraceae UCG-004, Coprococcus species produce butyrate, 
which can in turn be used to decrease hyperinflammation and increase anti-inflammatory 
responses (76). Studies have found that Coprococcus has a negative correlation with IBD in 
patients, and it has also been shown to protect the liver from inflammation in mice (77-80). 
While this information does not explain its increased abundance with high CRP, these 
samples may have contained different Coprococcus species that do not rely as heavily on 
butyrate-producing metabolic pathways.  

Similarly, the genera Erysipelotrichaceae UCG-003 shows conflicting research, despite 
showing higher prevalence in high AGP conditions at 12 months (Figure 7). Researchers have 
speculated that the inconsistent results seen in Erysipelotrichaeceae UCG-003 may be due to 
different species in the genus having different immunogenicity profiles and inflammatory 
response mechanisms (81). Increased abundance of the genus is seen in the lumen of 
colorectal cancer patients in addition to patients with untreated infection, intestinal 
dysfunction, and bile acid metabolism disorders (82-84). Additionally, Erysipelotrichaceae 
UCG-003 has a positive correlation with Th17 T helper cells, unique CD4+ T helper cells 
that produce interleukin-17, a highly inflammatory cytokine (85,86). This contradicts 
different evidence demonstrating that Erysipelotrichaeceae UCG-003 bacteria are propionate 
producers, which often contribute to anti-inflammatory effects, as seen with lower abundance 
in cases of lung cancer and chronic atrophic gastritis (87-89). As shown with the 
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Erysipelotrichaceae UCG-003 genus, different results can arise from different species, which 
may have occurred in this case with Coprococcus and Eubacterium eligens. 

 
Limitations The main limitation of this study is the low sample size of each group. As 
previously mentioned, the original dataset by McClorry et al. was used to study anemia so 
approximately half the subjects are anemic and were filtered out (18). Furthermore, infants 
undergo significant changes in their gut microbiome between 6 and 12 months of age, and 
the infants were further divided into their respective age groups to prevent age from acting as 
a confounding variable (3). The lack of infants with high CRP and AGP levels in each group 
reduces the capability to extrapolate conclusions with high statistical power (90).  

One of the downstream consequences of the filtering and binning process is that there 
was a limited number of infants with clinically-significant levels of CRP, and the median 
CRP level was used for stratification instead. Since these median values were much lower 
than the clinical threshold, the results for CRP may not reflect true differences associated with 
presence or absence of inflammation. The median values for 6-month and 12-month data were 
also different from each other, which may have contributed to the differing results between 
age groups for CRP.  
 
Conclusions This study analyzed the relationships between inflammation and gut microbial 
composition in 6 and 12-month-old infants. Our results revealed that although overall 
diversity of infant gut microbiomes is not significantly impacted by inflammation status, there 
begins to be a shift of more taxonomic changes being associated with inflammation as infants 
age from 6 to 12 months old. This demonstrates that as the gut microbiome ages and 
diversifies, it becomes more sensitive to and fluctuates with inflammation status. Determining 
the relationship between inflammation and infant gut microbiome composition provides a 
framework for future analysis using this dataset, however, it also identifies important trends 
that can be further explored in future studies to better understand relationships between infant 
gut microbiome and infant developmental processes. A better understanding of these 
dynamics could lead to the application of the infant gut microbiome to be used as an early 
diagnostic tool to quickly identify inflammation in infants for appropriate treatment. 
 
Future Directions First and foremost, it is recommended that this analysis be repeated using 
a larger cohort of infants. This would allow for larger numbers of samples within each bin, 
which may reveal different and more significant results. A larger cohort size would also allow 
for stratification of infants according to clinically significant CRP levels.  

Future studies using 18-month and/or 24-month-old cohorts can help determine whether 
this trend shows a continued increase in diversity in early infancy. Using an age group at 
approximately 2 or 3 years of age could also be used to see if this trend follows maturity of 
the microbiome, such that stabilization occurs when approaching an adult-like gut 
microbiome composition.  

To conduct further analysis on the results determined in this study, it is recommended to 
perform functional analysis on species determined from core microbiome, DESeq2, and 
indicator species analysis. This analysis may elucidate why the specific genera identified in 
this study were associated with particular inflammatory conditions. 
As mentioned in the discussion, diet may present a confounding variable in this study. It is 
recommended to bin the infants by diet categories to investigate how this variable impacts 
microbial composition in infants with and without inflammation. 
 
 
ACKNOWLEDGEMENTS  

We would like to express our gratitude to the MICB 475 teaching team Dr. Evelyn Sun, Dr. 
Melissa Chen, and Avril Metcalfe-Roach for their support and guidance throughout the 
project. Next, we would like to thank McClorry et al. for providing the dataset and metadata 
information that was used in this study. We would also like to thank our classmates in MICB 
475, especially to those with whom we collaborated and those who reviewed our presentation 
and pipeline. Finally, we are grateful for the funding, resources, and facilities provided by the 



UJEMI+ Job et al. 

September 2023   Volume 9:1-15 Undergraduate Research Article https://jemi.microbiology.ubc.ca/ 12 

Microbiology and Immunology Department at the University of British Columbia. We would 
also like to thank the anonymous reviewer for constructive feedback on this manuscript. 
 
CONTRIBUTIONS 
The initial conception and proposal for the project was determined by all authors. MAJ completed initial 
data processing using QIIME2 and core microbiome and indicator species analyses. CP performed 
binning of data, additional filtering and data processing in RStudio, as well as differential abundance 
analysis. ZM conducted the DESeq2 analysis, and JW completed calculation of diversity metrics and 
statistical analysis. All members participated in writing this manuscript, including editing and revisions. 
 
DATA AVAILABILITY 
Bash and R scripts developed for this project are available at the following GitHub repository: 
https://github.com/muradiz/MICB475_Project2
 

REFERENCES

1. Zhang H, Zhang Z, Liao Y, Zhang W, Tang D. 2022. The Complex Link and Disease Between the Gut 
Microbiome and the Immune System in Infants. Front Cell Infect Microbiol 12:924119. 
doi:10.3389/fcimb.2022.924119 

2. Sanidad KZ, Zeng MY. 2020. Neonatal gut microbiome and immunity. Curr Opin Microbiol 56:30–
37. doi:10.1016/j.mib.2020.05.011 

3. Niu J, Xu L, Qian Y, Sun Z, Yu D, Huang J, Zhou X, Wang Y, Zhang T, Ren R, Li Z, Yu J, Gao X. 
2020. Evolution of the Gut Microbiome in Early Childhood: A Cross-Sectional Study of Chinese 
Children. Front Microbiol. 11:439.  doi:10.3389/fmicb.2020.00439 

4. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. 2015. Role of the 
normal gut microbiota. World J Gastroenterol 21:8787–8803. doi:10.3748/wjg.v21.i29.8787 

5. Takiishi T, Fenero CIM, Câmara NOS. 2017. Intestinal barrier and gut microbiota: Shaping our 
immune responses throughout life. Tissue Barriers 5:e1373208. doi:10.1080/21688370.2017.1373208 

6. Huttenhower C, Kostic AD, Xavier RJ. 2014. Inflammatory bowel disease as a model for translating 
the microbiome. Immunity 40:843–854. doi:10.1016/j.immuni.2014.05.013 

7. Yip W, Hughes MR, Li Y, Cait A, Hirst M, Mohn WW, McNagny KM. 2021. Butyrate Shapes 
Immune Cell Fate and Function in Allergic Asthma. Front Immunol 12:628453. 
doi:10.3389/fimmu.2021.628453 

8. Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, Li H, 
Alekseyenko AV, Blaser MJ. 2012. Antibiotics in early life alter the murine colonic microbiome and 
adiposity. Nature 488:621–626. doi:10.1038/nature11400 

9. Medzhitov R. 2010. Inflammation 2010: New Adventures of an Old Flame. Cell 140:771–776. 
10. Ballou SP, Lozanski G. 1992. Induction of inflammatory cytokine release from cultured human 

monocytes by C-reactive protein. Cytokine 4:361–368. 
11. Rochemonteix BG, Wiktorowicz K, Kushner I, Dayer J-M. 1993. C-reactive protein increases 

production of IL-1α, IL-1β, and TNF-α, and expression of mRNA by human alveolar macrophages. 
Journal of Leukocyte Biology 53:439–445. 

12. Gannon BM, Glesby MJ, Finkelstein JL, Raj T, Erickson D, Mehta S. 2019. A point-of-care assay for 
alpha-1-acid glycoprotein as a diagnostic tool for rapid, mobile-based determination of inflammation. 
Curr Res Biotechnol 1:41–48. 

13. C-reactive protein concentrations as a marker of inflammation or infection for interpreting biomarkers 
of micronutrient status. https://www.who.int/publications-detail-redirect/WHO-NMH-NHD-EPG-
14.7. Retrieved 17 April 2023 

14. Baumann H, Gauldie J. 1994. The acute phase response. Immunol Today 15:74–80. 
15. Thurnham DI, Northrop-Clewes CA, Knowles J. 2015. The Use of Adjustment Factors to Address the 

Impact of Inflammation on Vitamin A and Iron Status in Humans123. J Nutr 145:1137S-1143S. 
16. Lobionda S, Sittipo P, Kwon HY, Lee YK. 2019. The Role of Gut Microbiota in Intestinal 

Inflammation with Respect to Diet and Extrinsic Stressors. Microorganisms 7:271. 
17. Kamng’ona AW, Young R, Arnold CD, Kortekangas E, Patson N, Jorgensen JM, Prado EL, Chaima 

D, Malamba C, Ashorn U, Fan Y-M, Cheung YB, Ashorn P, Maleta K, Dewey KG. 2019. The 
association of gut microbiota characteristics in Malawian infants with growth and inflammation. Sci 
Rep 9:12893. 

18. McClorry S, Zavaleta N, Llanos A, Casapía M, Lönnerdal B, Slupsky CM. 2018. Anemia in infancy 
is associated with alterations in systemic metabolism and microbial structure and function in a sex-
specific manner: an observational study. Am J Clin Nutr 108:1238–1248. 

19. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, 
Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, 
Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, 
Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, 
Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, 
Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, 



UJEMI+ Job et al. 

September 2023   Volume 9:1-15 Undergraduate Research Article https://jemi.microbiology.ubc.ca/ 13 

Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-
X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, 
Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, 
Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, 
Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson 
LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-
Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson 
CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG. 2019. Reproducible, 
interactive, scalable and extensible microbiome data science using QIIME 2. 8. Nat Biotechnol 
37:852–857. 

20. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: High-
resolution sample inference from Illumina amplicon data. 7. Nat Methods 13:581–583. 

21. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The 
SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic 
Acids Res 41:D590-596. 

22. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO. 2007. SILVA: a 
comprehensive online resource for quality checked and aligned ribosomal RNA sequence data 
compatible with ARB. Nucleic Acids Res 35:7188–7196. 

23. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements 
in performance and usability. Mol Biol Evol 30:772–780. 

24. McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and 
graphics of microbiome census data. PLoS One 8:e61217. 

25. Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, 
Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel 
DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. 2019. Welcome to the Tidyverse. 
Journal of Open Source Software 4:1686. 

26. Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P, 
Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, 
Chirico M, Caceres MD, Durand S, Evangelista HBA, FitzJohn R, Friendly M, Furneaux B, Hannigan 
G, Hill MO, Lahti L, McGlinn D, Ouellette M-H, Cunha ER, Smith T, Stier A, Braak CJFT, Weedon 
J. 2022. vegan: Community Ecology Package (2.6-4). 

27. Carroll J, Schep A, Sidi J, Rudis B, Ihaddaden MEF, Neitmann T. 2023. ggeasy: Easy Access to 
“ggplot2” Commands (0.1.4). 

28. Ahlmann-Eltze C, Patil I. 2021. ggsignif: R Package for Displaying Significance Brackets for 
“ggplot2.” PsyArXiv https://doi.org/10.31234/osf.io/7awm6. 

29. Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary 
analyses in R. Bioinformatics 35:526–528. 

30. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-
seq data with DESeq2. Genome Biol 15:550. 

31. Wickham H, François R, Henry L, Müller K, Vaughan D, Software P, PBC. 2023. dplyr: A Grammar 
of Data Manipulation (1.1.1). 

32. De Cáceres M, Legendre P. 2009. Associations between species and groups of sites: indices and 
statistical inference. Ecology 90:3566–3574. 

33. Neu AT, Allen EE, Roy K. 2021. Defining and quantifying the core microbiome: Challenges and 
prospects. Proceedings of the National Academy of Sciences 118:e2104429118. 

34. Gao C-H, Yu G, Dusa A. 2022. ggVennDiagram: A “ggplot2” Implement of Venn Diagram (1.2.2). 
35. Neuwirth E. 2022. RColorBrewer: ColorBrewer Palettes (1.1-3). 
36. Kassambara A. 2023. ggpubr: “ggplot2” Based Publication Ready Plots (0.6.0). 
37. Lahti L, Shetty S. 2023. microbiome: Microbiome Analytics (1.20.0). Bioconductor version: Release 

(3.16). 
38. Lin C, Lin Y, Zhang H, Wang G, Zhao J, Zhang H, Chen W. 2022. Intestinal ‘Infant-Type’ 

Bifidobacteria Mediate Immune System Development in the First 1000 Days of Life. Nutrients 
14:1498. 

39. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, 
Khan MT, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee YS, Kotowska D, Colding C, Tremaroli 
V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K, Dahlgren J, Wang J. 2015. Dynamics and 
Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host & Microbe 
17:690–703. 

40. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE. 
2006. Factors Influencing the Composition of the Intestinal Microbiota in Early Infancy. Pediatrics 
118:511–521. 

41. Scott KP, Martin JC, Duncan SH, Flint HJ. 2014. Prebiotic stimulation of human colonic butyrate 
producing  bacteria and bifidobacteria, in vitro. FEMS Microbiology Ecology 87:30–40. 

42. Segain J-P, Blétière DR de la, Bourreille A, Leray V, Gervois N, Rosales C, Ferrier L, Bonnet C, 
Blottière HM, Galmiche J-P. 2000. Butyrate inhibits inflammatory responses through NFκB 
inhibition: implications for Crohn’s disease. Gut 47:397–403. 

43. Everard A, Cani PD. 2013. Diabetes, obesity and gut microbiota. Best Practice & Research Clinical 
Gastroenterology 27:73–83. 



UJEMI+ Job et al. 

September 2023   Volume 9:1-15 Undergraduate Research Article https://jemi.microbiology.ubc.ca/ 14 

44. Boudry G, Charton E, Le Huerou-Luron I, Ferret-Bernard S, Le Gall S, Even S, Blat S. 2021. The 
Relationship Between Breast Milk Components and the Infant Gut Microbiota. Frontiers in Nutrition 
8. 

45. Ringel-Kulka T, Cheng J, Ringel Y, Salojärvi J, Carroll I, Palva A, Vos WM de, Satokari R. 2013. 
Intestinal Microbiota in Healthy U.S. Young Children and Adults—A High Throughput Microarray 
Analysis. PLOS ONE 8:e64315. 

46. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. 2005. Host-Bacterial Mutualism in the 
Human Intestine. Science 307:1915–1920. 

47. Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, Corthier G, Furet J-P. 2009. The 
Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiology 9:123. 

48. Zhang H, Chen L. 2010. Phylogenetic analysis of 16S rRNA gene sequences reveals distal gut bacterial 
diversity in wild wolves (Canis lupus). Mol Biol Rep 37:4013–4022. 

49. Tomova A, Bukovsky I, Rembert E, Yonas W, Alwarith J, Barnard ND, Kahleova H. 2019. The Effects 
of Vegetarian and Vegan Diets on Gut Microbiota. Frontiers in Nutrition 6. 

50. Baumann-Dudenhoeffer AM, D’Souza AW, Tarr PI, Warner BB, Dantas G. 2018. Infant diet and 
maternal gestational weight gain predict early metabolic maturation of gut microbiomes. 12. Nat Med 
24:1822–1829. 

51. Zhou Y, Zhi F. 2016. Lower Level of Bacteroides in the Gut Microbiota Is Associated with 
Inflammatory Bowel Disease: A Meta-Analysis. Biomed Res Int 2016:5828959. 

52. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, 
Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, 
Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon 
JI. 2013. Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic 
phenotypes in mice. Science 341:10.1126/science.1241214. 

53. Tamana SK, Tun HM, Konya T, Chari RS, Field CJ, Guttman DS, Becker AB, Moraes TJ, Turvey SE, 
Subbarao P, Sears MR, Pei J, Scott JA, Mandhane PJ, Kozyrskyj AL. Bacteroides-dominant gut 
microbiome of late infancy is associated with enhanced neurodevelopment. Gut Microbes 13:1930875. 

54. Vitetta L, Llewellyn H, Oldfield D. 2019. Gut Dysbiosis and the Intestinal Microbiome: Streptococcus 
thermophilus a Key Probiotic for Reducing Uremia. Microorganisms 7:228. 

55. Benítez-Páez A, Gómez del Pugar EM, López-Almela I, Moya-Pérez Á, Codoñer-Franch P, Sanz Y. 
2020. Depletion of Blautia Species in the Microbiota of Obese Children Relates to Intestinal 
Inflammation and Metabolic Phenotype Worsening. mSystems 5:e00857-19. 

56. Hosomi K, Saito M, Park J, Murakami H, Shibata N, Ando M, Nagatake T, Konishi K, Ohno H, 
Tanisawa K, Mohsen A, Chen Y-A, Kawashima H, Natsume-Kitatani Y, Oka Y, Shimizu H, Furuta 
M, Tojima Y, Sawane K, Saika A, Kondo S, Yonejima Y, Takeyama H, Matsutani A, Mizuguchi K,  
Miyachi M, Kunisawa J. 2022. Oral administration of Blautia wexlerae ameliorates obesity and type 
2 diabetes via metabolic remodeling of the gut microbiota. 1. Nat Commun 13:4477. 

57. Henke MT, Kenny DJ, Cassilly CD, Vlamakis H, Xavier RJ, Clardy J. 201 Ruminococcus gnavus, a 
member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory 
polysaccharide. Proceedings of the National Academy of Sciences 116:12672–12677. 

58. Hall AB, Yassour M, Sauk J, Garner A, Jiang X, Arthur T, Lagoudas GK, Vatanen T, Fornelos N, 
Wilson R, Bertha M, Cohen M, Garber J, Khalili H, Gevers D, Ananthakrishnan AN, Kugathasan S, 
Lander ES, Blainey P, Vlamakis H, Xavier RJ, Huttenhower C. 2017. A novel Ruminococcus gnavus 
clade enriched in inflammatory bowel disease patients. Genome Medicine 9:103. 

59. Zhang J, Song L, Wang Y, Liu C, Zhang L, Zhu S, Liu S, Duan L. 2019. Beneficial effect of 
butyrateproducing Lachnospiraceae on stress-induced visceral hypersensitivity in rats. J Gastroenterol 
Hepatol 34:1368–1376. 

60. Chen J, Vitetta L. 2020. The Role of Butyrate in Attenuating Pathobiont-Induced Hyperinflammation. 
Immune Netw 20:e15. 

61. Maukonen J, Kolho K-L, Paasela M, Honkanen J, Klemetti P, Vaarala O, Saarela M. 2015. Altered 
Fecal Microbiota in Paediatric Inflammatory Bowel Disease. Journal of Crohn’s and Colitis 9:1088–
1095. 

62. Shang L, Liu H, Yu H, Chen M, Yang T, Zeng X, Qiao S. 2021. Core Altered Microorganisms in 
Colitis Mouse Model: A Comprehensive Time-Point and Fecal Microbiota Transplantation Analysis. 
Antibiotics (Basel) 10:643. 

63. Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. 2020. The Controversial 
Role of Human Gut Lachnospiraceae. Microorganisms 8:573. 

64. Nishiwaki H, Ito M, Ishida T, Hamaguchi T, Maeda T, Kashihara K, Tsuboi Y, Ueyama J, Shimamura 
T, Mori H, Kurokawa K, Katsuno M, Hirayama M, Ohno K. 2020. Meta-Analysis of Gut Dysbiosis in 
Parkinson’s Disease. Movement Disorders 35:1626–1635. 

65. Jin M, Li J, Liu F, Lyu N, Wang K, Wang L, Liang S, Tao H, Zhu B, Alkasir R. 2019. Analysis of the 
Gut Microflora in Patients With Parkinson’s Disease. Frontiers in Neuroscience 13. 

66. Toya T, Corban MT, Marrietta E, Horwath IE, Lerman LO, Murray JA, Lerman A. 2020. Coronary 
artery disease is associated with an altered gut microbiome composition. PLoS One 15:e0227147. 

67. Hu Y-H, Meyer K, Lulla A, Lewis CE, Carnethon MR, Schreiner PJ, Sidney S, Shikany JM, Meirelles 
O, Launer LJ. 2023. Gut microbiome and stages of diabetes in middle-aged adults: CARDIA 
microbiome study. Nutrition & Metabolism 20:3. 



UJEMI+ Job et al. 

September 2023   Volume 9:1-15 Undergraduate Research Article https://jemi.microbiology.ubc.ca/ 15 

68. Pushalkar S, Ji X, Li Y, Estilo C, Yegnanarayana R, Singh B, Li X, Saxena D. 2012. Comparison of 
oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC 
Microbiology 12:144. 

69. Reyes R, Abay A, Siegel M. 2001. Gemella morbillorum bacteremia associated with adenocarcinoma 
of the cecum. The American Journal of Medicine 111:164–165. 

70. Desmottes M-C, Brehier Q, Bertolini E, Monteiro I, Terreaux W. 2018. Septic arthritis of the knee due 
to Gemella morbillorum. International Journal of Rheumatic Diseases 21:1146–1147. 

71. Shinha T. 2017. Endocarditis due to Gemella morbillorum. Internal Medicine 56:1751–1751. 
72. García-Lechuz JM, Cuevas-Lobato O, Hernángomez S, Hermida A, Guinea J, Marín M, Peláez T, 

Bouza E. 2002. Extra-abdominal infections due to Gemella species. Int J Infect Dis 6:78–82. 
73. García López E, Martín-Galiano AJ. 2020. The Versatility of Opportunistic Infections Caused by 

Gemella Isolates Is Supported by the Carriage of Virulence Factors From Multiple Origins. Frontiers 
in Microbiology 11. 

74. Knez M, Ranic M, Stangoulis JCR, Glibetic M. 2022. 2.20 - The Mineral Intake and Microbiota, p. 
230–242. In Glibetic, M (ed.), Comprehensive Gut Microbiota. Elsevier, Oxford. 

75. Mukherjee A, Lordan C, Ross RP, Cotter PD. Gut microbes from the phylogenetically diverse genus 
Eubacterium and their various contributions to gut health. Gut Microbes 12:1802866. 

76. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. 2016. Bifidobacteria and Butyrate-Producing 
Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front Microbiol 
7:979. 

77. Shaw KA, Bertha M, Hofmekler T, Chopra P, Vatanen T, Srivatsa A, Prince J, Kumar A, Sauer C, 
Zwick ME, Satten GA, Kostic AD, Mulle JG, Xavier RJ, Kugathasan S. 2016. Dysbiosis, 
inflammation, and response to treatment: a longitudinal study of pediatric subjects with newly 
diagnosed inflammatory bowel disease. Genome Medicine 8:75. 

78. Xu Y, Liu X, Liu X, Chen D, Wang M, Jiang X, Xiong Z. 2021. The Roles of the Gut Microbiota and 
Chronic Low-Grade Inflammation in Older Adults With Frailty. Frontiers in Cellular and Infection 
Microbiology 11. 

79. Yang R, Shan S, Shi J, Li H, An N, Li S, Cui K, Guo H, Li Z. 2023. Coprococcus eutactus, a Potent 
Probiotic, Alleviates Colitis via Acetate-Mediated IgA Response and Microbiota Restoration. J Agric 
Food Chem https://doi.org/10.1021/acs.jafc.2c06697. 

80. Jena PK, Sheng L, Liu H-X, Kalanetra KM, Mirsoian A, Murphy WJ, French SW, Krishnan VV, Mills 
DA, Wan Y-JY. 2017. Western Diet–Induced Dysbiosis in Farnesoid X Receptor Knockout Mice 
Causes Persistent Hepatic Inflammation after Antibiotic Treatment. Am J Pathol 187:1800–1813. 

81. Kaakoush NO. 2015. Insights into the Role of Erysipelotrichaceae in the Human Host. Frontiers in 
Cellular and Infection Microbiology 5. 

82. Chen W, Liu F, Ling Z, Tong X, Xiang C. 2012. Human Intestinal Lumen and Mucosa-Associated 
Microbiota in Patients with Colorectal Cancer. PLOS ONE 7:e39743. 

83. Shang J, Guo H, Li J, Li Z, Yan Z, Wei L, Hua Y, Lin L, Tian Y. 2022. Exploring the mechanism of 
action of Sanzi formula in intervening colorectal adenoma by targeting intestinal flora and intestinal 
metabolism. Front Microbiol 13:1001372. 

84. Lozupone CA, Li M, Campbell TB, Flores SC, Linderman D, Gebert MJ, Knight R, Fontenot AP, 
Palmer BE. 2013. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe 
14:10.1016/j.chom.2013.08.006. 

85. Cheng S, Hu J, Wu X, Pan J-A, Jiao N, Li Y, Huang Y, Lin X, Zou Y, Chen Y, Zhu L, Zhi M, Lan P. 
2021. Altered gut microbiome in FUT2 loss-of-function mutants in support of personalized medicine 
for inflammatory bowel diseases. Journal of Genetics and Genomics 48:771–780. 

86. Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, Wanke CA, Ward HD. 2015. 
Intestinal Microbiota, Microbial Translocation, and Systemic Inflammation in Chronic HIV Infection. 
J Infect Dis 211:19–27. 

87. Song Y, Malmuthuge N, Steele MA, Guan LL. 2018. Shift of hindgut microbiota and microbial short 
chain fatty acids profiles in dairy calves from birth to pre-weaning. FEMS Microbiology Ecology 
94:fix179.. 

88. Zhao F, An R, Wang L, Shan J, Wang X. 2021. Specific Gut Microbiome and Serum Metabolome 
Changes in Lung Cancer Patients. Frontiers in Cellular and Infection Microbiology 11. 

89. Gai X, Qian P, Guo B, Zheng Y, Fu Z, Yang D, Zhu C, Cao Y, Niu J, Ling J, Zhao J, Shi H, Liu G. 
2022. Heptadecanoic acid and pentadecanoic acid crosstalk with fecal-derived gut microbiota are 
potential non-invasive biomarkers for chronic atrophic gastritis. Front Cell Infect Microbiol 
12:1064737. 

90. Serdar CC, Cihan M, Yücel D, Serdar MA. 2021. Sample size, power and effect size revisited: 
simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med 
(Zagreb) 31:010502. 

 
 
 
 
 
 
 


