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SUMMARY  The gut microbiome is dynamic within its host and susceptible to changes in 
both diversity and functionality. A variety of environmental factors can disturb the balance 
of the gut microbiome, including chronic environmental radiation. It has been previously 
documented that exposure to chronic levels of radiation can induce changes in the gut 
microbiome in a time-dependent manner. Bank voles from the area in and around the 
Chernobyl Exclusion Zone provide an ideal model for examining the effects of chronic 
environmental radiation on the gut microbiome. Past studies on these subjects have been 
conducted through Operational Taxonomic Unit (OTU) based metabarcoding analysis, which 
works on the basis of clustering according to sequence similarity. Notably, a newer Amplicon 
Sequence Variant (ASV) based method of metabarcoding analysis is rapidly increasing in 
popularity for conducting such analyses. This is in large part due to its capacity for specific 
single nucleotide differentiation and identification of microbial gene sequences at a species 
level. Herein, we conduct a direct comparison of these two metabarcoding analysis methods 
for identifying the effects of chronic radiation on the gut microbiome of bank voles. Our 
results suggest that while OTU and ASV metabarcoding analyses yield similar results with 
regard to examining microbial diversity and functionality, ASV-based analysis is able to 
capture slightly more detailed gut microbial diversity compared to OTU-based analysis.  
 
 
INTRODUCTION 

he Gut Microbiome and its Susceptibility to Change. The gut microbiome is made 
up of trillions of microorganisms which exist in a symbiotic relationship with their host 

(1). While the host provides these microorganisms with food, nutrients and a favourable 
environment in which they can reside, organisms of the microbiome are crucial to their host's 
digestion, nutrient cycling, susceptibility to disease, and immune regulation (1). Importantly, 
gut microbiome composition is not static; susceptible to both qualitative and quantitative 
changes in microbial diversity, thereby affecting the collective functionality of these host 
organisms (2, 3). Variations in gut microbiota composition have profound effects on their 
collective functional profiles and the benefits conferred to their host (1, 3). There are 
numerous factors which determine gut microbiota composition, including but not limited to: 
host diet, age, antibiotic intake, and environment (4).  

Effects of Radiation on the Gut Microbiome. Although the degree to which many of 
these factors are able to affect gut microbiome composition have been thoroughly 
documented, the impacts of environmental pollution, specifically high environmental 
radiation, on these microorganisms is largely unknown. It has been previously reported that 
not only does the human gut microbiome seem to contribute to radiosensitivity, but exposure 
to chronic radiation also results in significant alterations of gut microbial abundance and 
diversity (5). Further research has shown a possible link between chronic exposure to low-
dose radiation and changes in gut microbiota composition and metabolism in mice (6). At a 
genus level, radiation exposure has been shown to cause significant alterations to gut 
microbial abundance in a time dependent manner, resulting in an elevated abundance of 
Clostridium, Helicobacter and Oscilibacter, and a decreased abundance of Bacteroidetes and 
Barnesiella (6). These changes in gut microbiota composition were seen to induce functional 
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differences on biochemical pathways, especially those affecting metabolism and DNA repair, 
following prolonged exposure to radiation (4, 6).  

Chernobyl. One of the most relevant examples of environmental radiation pollution in 
recent history is the Chernobyl disaster of 1986, in which ionizing radiation was released 
from Chernobyl at an alarming rate, resulting in considerable radioactive pollution within the 
immediate and surrounding regions (7). Although human populations were evacuated from 
those areas most severely affected by this environmental pollution, identified as the 
Chernobyl Exclusion Zone (CEZ), wild animals inhabiting the CEZ have been exposed to 
chronic radiation (7). As such, these wild animals constitute an ideal repository for examining 
the effects of environmental radiation on the gut microbiome.  

The Dataset Used and Previous Studies. To this end, Lavrinienko et al. analyzed 16s 
rRNA sequences from fecal samples of 137 bank voles within and around the CEZ with 63 
being exposed to high levels of radiation (CH), 43 being exposed to low levels of radiation 
(CL), and 31 being exposed to no significant levels of radiation (KL) (8). The dataset from 
which these analyses were made includes a number of metadata variables pertaining to the 
bank voles from which the fecal samples were isolated, including location. Lavrinienko et al. 
determined that while radiation exposure did not have a significant effect on the species 
richness of gut microbiome samples, there were significant differences in species abundance 
among bank voles which had been chronically exposed to high levels of radiation. Namely, 
the authors identified a notable negative correlation between exposure to radiation and the 
ratio of Firmicutes to Bacteroidetes within the vole microbiome (8). Lavrinienko et al. 
observed that chronic exposure to radionuclides greatly impacts the functional profiles of the 
bank vole gut microbiome, specifically those involved in the assimilation and transport of 
carbohydrates, xenobiotics biodegradation and DNA repair (8). Collectively, their results 
highlight how exposure to environmental pollution is able to cause dramatic changes in the 
composition and function of the gut microbiome. 

OTU- vs. ASV-based Analysis. While their experimental protocol was thorough, 
Lavrinienko et al. conducted their analysis based on Operational Taxonomic Units (OTUs) 
(8). OTU-based classification of RNA sequences is typically done at 97% sequence 
similarity, by which similar genetic sequence variants are organized into clusters (9). 
Although OTU-based methods have traditionally been the gold standard for microbial 
analysis in molecular biology, it is limited in terms of detecting minute differences, in both 
diversity and composition, which may be present within samples. This is due in large part to 
the fact that clustering sequences at 97% similarity allows only for organism differentiation 
at the genus level (9). Conversely, ASV-based analysis provides an updated alternative for 
studying microbial diversity; differentiating sequence variants based on single nucleotide 
changes and enabling the precise identification of microbes at a species level. Herein, we aim 
to conduct an ASV-based diversity and functionality analysis on the vole dataset compiled 
by Lavrinienko et al., in an attempt to both reaffirm and elaborate on the established 
knowledge of how exposure to chronic radiation affects the gut microbiome. We predict that 
the increased specificity of sequence differentiation identified by ASV-based analysis will 
offer greater insight into the composition and functional profiles of vole gut microbiome 
samples when compared to previous OTU-based studies. 
 
 
METHODS AND MATERIALS 

Study system. Lavrinienko et al. collected the fecal samples of 137 different bank voles from 
64 trapping locations across three sampling sites in Northern Ukraine from May to June of 
2016 (8). Each of these sampling sites covered areas of differing environmental radiation 
levels ranging from a mean of 30.1 µSv/h in the high radiation zone, CH, to a mean of 
0.25µSv/h and 0.33µSv/h in the low radiation zone, CL, and control radiation zone, KL, 
respectively (8). DNA was extracted from the naturally passed fecal pellets following the 
Earth Microbiome Project Protocol (www.earthmicrobiome.org/protocols-and-standards), 
followed by the demultiplexing of raw DNA sequences and PCR amplification of 16S 
ribosomal RNA (16S rRNA) genes to prepare the sequence library used in our study (8, 10). 
The V4 variable regions of these 16S rRNA genes were amplified using the 515F/806R 
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primer pair, and paired-end 250 base pair reads were generated from barcoded amplicons 
sequenced on Illumina MiSeq by Beijing Genomics Institute, Hong Kong, China (8, 11).  
 
Read data processing in QIIME2. The demultiplexed 16S rRNA reads were imported from 
the dataset and joined with the manifest file using the QIIME2 tools import function, treating 
the reads as SingleEndFastqManifestPhred33 format. These demultiplexed sequences 
underwent a quality control step via the QIIME2 Diverse Amplicon Denoising Algorithm 2 
(DADA2) plugin (12, 13). Quality control via DADA2 eliminates sequencing errors from 
amplicon clusters, chimeric sequences, and sorts sequencing reads into ASVs (12, 13). During 
this process, sequences were truncated at 180nts to maintain a median phred quality score of 
37 (12, 13). At this point our analysis diverges into analysis by two different methods of 
feature identification; ASV, and 97% OTU. QIIME2 steps are outlined in Script #1. 
 
OTU assignment, rarefaction, and phylogeny. In effort to make our data comparable to the 
OTUs generated by Lavrinienko et. al, we imported the same GreenGenes 97% OTU 
reference database, which provides reference sequences for OTU assignment, into QIIME2 
(14). The QIIME2 vsearch cluster-features-open-reference tool was used to assign OTUs to 
the feature table and representative sequences previously generated by DADA2 (15). This 
clustering tool generated two artifacts: a feature table artifact, and a representative sequences 
artifact of open reference frame OTUs with 97% sequence similarity. The feature table was 
rarefied to a depth consistent with that applied by Lavrinienko et. al: 18,000 sequence reads 
per sample (8). Conversely, the 97% OTU representative sequences artifact was used to 
generate a rooted phylogenetic tree, produced by applying the QIIME2 phylogeny tool; align-
to-tree-mafft-fasttree (16, 17, 18). QIIME2 steps are outlined in Script #1. 
 
ASV rarefaction and phylogeny. The feature table artifact generated by DADA2 was 
rarefied to a depth of 18,000 sequence reads per sample in order to maintain the ability to 
produce comparative results to Lavrinienko et. al and analysis by OTU. Additionally, this 
depth was chosen because representative sampling across the treatment zones, as well as 
feature richness, were seen to be maintained to the same degree as rarefaction at 18,000 for 
OTUs. Using the feature table and representative sequence artifacts generated by DADA2, 
the QIIME2 phylogeny tool align-to-tree-mafft-fasttree was applied again to create a rooted 
phylogenetic tree used in downstream diversity metric calculations (16). QIIME2 steps are 
outlined in Script #1. 
 
Taxonomic classification for OTU and ASV features. For taxonomic classification, we 
opted for a pre-trained Naive Bayes classifier trained on Silva 138 99% OTUs from the 
515F/806R region of sequences (19, 20). This classifier was applied to the representative 
sequence artifacts derived from both ASVs and OTUs via the QIIME2 feature-classifier 
classify-sklearn plugin (21, 22). The taxonomy artifacts generated from this plugin were used 
in differential abundance analysis and contain information relating the taxonomic 
classifications to each ASV and OTU cluster. 
Lastly, the data were exported for analysis in R (v 4.1.2) (23). The data was exported in BIOM 
v2.1 format and processed in R. QIIME2 steps are outlined in Script #1. 
 
Data and statistical analysis for ASVs and OTUs. Alpha diversity metrics; Faith’s 
phylogenetic diversity (PD) and Pielou’s evenness, were produced for both ASVs and OTUs 
using the QIIME2 diversity core-metrics-phylogenetic plugin (12). Pairwise Kruskal-Wallis 
tests were conducted to determine which metadata categories played a significant role in the 
differences of gut microbial diversity between treatment areas CH, CL and KL.  
 
Beta diversity and differential abundance in R. Bray-Curtis dissimilarities and Weighted 
UniFrac were computed in R and clusters were identified with 95% confidence for both ASV 
assigned features and OTU clusters. For differential abundance analysis between treatment 
areas CH, CL, and KL, the relative abundances for each ASV and for each OTU were 
calculated. Only ASVs or OTUs at an abundance of at least 0.1% were considered in the 
analysis. To refine our selection to detect significantly different taxa among groups of ASVs 
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and OTUs, data were analyzed at a p-value threshold of 0.05 (<0.05), corresponding to a false 
discovery rate of 5%. Differentially abundant taxa were identified for analysis by both ASV 
and OTU. The results from differential abundance were further refined to identify changes in 
the abundance of Bacteroidetes, Firmicutes, and Proteobacteria among the abundances 
computed by ASV and by OTU, respectively. Lastly, the mean relative abundance of bacterial 
taxa at the phylum level were computed and displayed as two bar charts; results of analysis 
by ASV and results of analysis by OTU. RStudio steps are outlined in Script #2R and Script 
#3R.  
 
Determining functionality through PICRUSt2. The functional composition of the vole gut 
microbiota was assessed via PICRUSt2 (Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States 2) to predict functional abundances (24, 25). Using the 
16S rRNA gene sequencing data, predictions for enzyme commission (EC) numbers and 
MetaCyc pathways were generated and subsequently interpreted via the Statistical Analysis 
of Metagenomic Profiles (STAMP) software (26). The predicted metagenomes were 
classified using Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs and 
summarized using KEGG pathways at levels 2 and 3.  
 
RESULTS 

Radiation-associated differences in alpha diversity. Feature tables generated from 
ASV assignment by DADA2 were able to identify 6,044 unique features. When features were 
identified using open reference frame 97% OTU clustering, 2,955 unique features were found. 
Faith’s phylogenetic diversity analysis revealed differences in microbial richness by sample 
site for both ASVs and OTUs. Both modes of analysis were able to detect significant 
differences in phylogenetic diversity between CH and KL (q < 0.005), while only analysis by 
ASV had sufficient resolution to detect a significant difference in richness between CL and 
KL (q < 0.05) (Figure 1., Table 1). The alpha diversity metric of Pielou’s evenness was also 

Group 1 Group 2 q-value by OTU q-value by ASV 

CH (n=63) 

  

CL (n=43) 

CL (n=43) 

KL (n=31) 

KL (n=31) 

0.206115 

0.002291 

0.185599 

0.248116 

0.000407 

0.046999 

calculated for analysis by ASV and by OTU - indicating that the number of microbes between 
sample sites did not differ significantly (Supplemental Figure 1., Supplemental Table 1). 
Taken together, these results suggested that total species richness, but not evenness, was 
significantly higher in analysis by ASV compared to analysis by OTU (Figure 1).  

Radiation-associated changes in beta diversity metrics. Two Beta diversity metrics; 
Bray-Curtis dissimilarities and weighted UniFrac, were calculated for grouping by ASV and 
by OTU. While both of these metrics consider differences in taxonomic abundance, Bray-
Curtis additionally considers species richness while weighted UniFrac also considers sample 
relatedness (27). In both ASV and OTU-based analysis, inter-individual differences in gut 
microbiota communities for the bank vole samples were exhibited to a high degree, and 
samples from uncontaminated areas CL and KL displayed larger inter-individual variation 
compared to those from CH. This not only suggests that exposure to chronic high-level 
radiation induced predictable and particular changes to the gut microbiome, but also 
highlights how although ASV and OTU-based methods differ, they are both able to capture 
minute and important differences in microbial diversity (Figure 2, Figure 3). There was 
found to be a substantial overlap of clustering between samples from uncontaminated areas  

TABLE. 1 Kruskal-Wallis test results for pairwise comparison of Faith’s 
phylogenetic diversity between treatment areas for OTU and ASV. 
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CL and KL across the Bray-Curtis and weighted UniFracs (Figure 2., Figure 3). This pattern 
was seen regardless of the mode of analysis (ASV or OTU). The notable differences between  

FIG. 1 Faith’s phylogenetic diversity 
for OTUs and ASVs. Quantification of 
microbial alpha diversity (Faith’s PD) 
across voles and treatment sites with 
error bars indicating median value ± 
SE. (A) Faith’s PD by OTU quantified 
by Kruskal-Wallis tests conducted in 
QIIME2 in a pairwise manner between 
CH, CL, and CL with significant 
differences between CH and KL (q = 
0.002). (B) Faith’s PD by ASV 
quantified by Kruskal-Wallis tests 
conducted in QIIME2 in a pairwise 
manner between CH, CL, and KL with 
significant differences between CH and 
KL (q = 0.0004), and CL and KL (q = 
0.05). A net decrease in Faith’s PD is 
observed for OTUs relative to ASVs. 
 
 
 

FIG. 2 Bray-Curtis dissimilarities by treatment area for OTUs and ASVs. Bray-Curtis dissimilarity distances between 
bank vole gut microbiota composition at a rarefaction depth of 18,000 among the three study areas, CH, red (n = 63); CL, 
blue (n = 43); KL, green (n = 31). Each point represents a single sample, and each shape indicates host sex coloured 
according to study area. Ellipses represent a 95% confidence interval around the cluster centroid. (A) Bray-Curtis 
dissimilarity distances from analysis by OTU showing separation between the CH cluster from the CL and KL clusters split 
along the first and second PCoA axes. (B) Bray-Curtis dissimilarities from analysis by ASV showing separation between 
the CH cluster from the CL and KL clusters along the first PCoA axis.  
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Figure 2A and Figure 2B are that analysis by OTU leads to the separation of CH from CL 
and CK clusters split between the first and second Principle Coordinate Axes (PCoA), while 
analysis by ASV leads to separation mainly along the first PCoA axis. With regards to 
weighted UniFrac, there are commonalities between the two analysis methods in that there is 
a nearly identical separation split between the first and second PCoA axes of the CH cluster 
from the CL and KL clusters (Figure 3). Considering beta diversity metrics across ASV and 
OTU analysis, differences in diversity were observed between contaminated and 
uncontaminated areas in that the CH treatment group shared significantly less inter-sample 
diversity in terms of species richness compared to CL and KL samples. Our analyses were 
unable to identify any significant differences through weighted UniFrac, suggesting no 
variations in sample relatedness across the different treatment groups, and were also unable 
to identify any detectable differences in taxonomic abundance when comparing the results 
from ASV and OTU-based analysis. 

Relative abundance. Differential relative abundances were deduced for both ASV and 
OTU analysis, and the phyla determined to have significant (p < 0.005) changes in abundance 
were plotted (Figure 4). While ASV generation in QIIME2 incorporates feature assignment, 
OTU-based methods require feature assignment according to a reference database. In this 
analysis, OTUs were assigned features according to the Greengenes 97% OTU reference 
database (12). As such, taxa names differ slightly in the relative abundance plots (Figure 4). 
For the purposes of this analysis, the Baceroidota and Actinobacteriota phyla are compared 
directly to Bacteroidetes and Actinobacteria, respectively. Notably, analysis by ASV 
identified an increase in the relative abundance of Proteobacteria, and a decrease in 
Spirochaetes - results which were not observed in the OTU differential abundance (Figure 
4). OTU differential abundance identified two phyla that increased significantly in abundance 
in contaminated areas relative to uncontaminated areas: Desulfobacterota and 
Campilobacterota, which were not present in abundance by ASV analysis (Figure 4). The 
changes in abundance of key bacteria identified by Lavrinienko et al.; Bacteroidetes, 
Firmicutes, and Proteobacteria, were determined between CH, CL, and KL, and compared 
using analysis by ASV and by OTU. Both modes of analysis identified Bacteroidetes as 
having lower relative abundance in CH compared to CL and KL (Figure 5). Although ASV  

FIG. 3 Weighted UniFrac by treatment area for OTUs and ASVs. Beta diversity by Weighted UniFrac distances 
between bank vole gut microbiota composition at a rarefaction depth of 18,000 among the three study areas, CH, red 
(n = 63); CL, blue (n = 43); KL, green (n = 31). Each point represents a single sample, and each shape indicates host sex 
coloured according to study area. Ellipses represent a 95% confidence interval around the cluster centroid. (A) Weighted 
UniFrac distances from analysis by OTU showing separation between the CH cluster from the CL and KL clusters split 
along the first and second PCoA axes. (B) Weighted UniFrac from analysis by ASV showing separation between the CH 
cluster from the CL and KL clusters split along the first and second PCoA axis. 
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and OTU analysis reveal the same relative abundance proportions of Bacteroidetes, there is 
an approximate 10% decrease in the relative abundance of Bacteroidetes across all treatment 
sites in analysis by ASV, compared to OTU (Figure 5A, B). Conversely, both ASV and OTU 
analysis identify Firmicutes as having higher relative abundance in CH compared to CL and 
KL (Figure 5C, D). Again, there was an approximate 10% decrease in the overall abundance 
of Firmicutes across all treatment areas when the analysis was conducted by ASV compared 
to OTU. The most notable difference in the two methods of analysis was observed in the 
relative abundance of Proteobacteria. Following OTU-based analysis, the relative abundance 
of Proteobacteria was found to be close to zero (Figure 5E). This provides a stark contrast to 
the results from ASV analysis, which determined Proteobacteria to be more abundant in CH 
than CL and KL, with median relative abundance of approximately 2.5% for the contaminated 
area, CH, and 1% for uncontaminated areas CL and KL (Figure 5F). The mean relative 
abundance of the significantly abundant phyla among the treatment areas for both OTU and 
ASV analysis is displayed in Figure 6. Notably, relative abundance by OTU identified three 
phyla which were absent from phyla assignment by ASV: Compilobacterota, Cyanobacteria, 
and Desulfobacterota. Given that ASV and OTU analysis pipelines differed feature 
assignment, it is likely that these three phyla were incorporated into other groups during ASV 
phyla assignment. Nevertheless, the major difference between phyla assignment by ASV and 
OTU is that the relative abundance of Proteobacteria is slightly underrepresented in analysis 
by OTU compared to analysis by ASV (8).  

Functionality of the vole gut microbiome. Predicted functionality pathways were 
determined for both OTU and ASV analysis. PICRUSt2 analysis determined no significant 
differences in the majority of functional pathways between the three treatment groups when 
comparing OTU- and ASV-based modes. However, multiple group analysis via ANOVA 
identified changes in functional pathways when comparing OTU and ASV derived feature 
tables. Most notably, the proportion of sequences of distinct pathways in the CH treatment 
were comparable between the two different PICRUSt2 modes, in which the ASV feature table 
analysis indicated a decrease in proportion (Figure 7). Three pathways, the biotin 
biosynthesis, acetyl CoA, and glycol metabolism and degradation pathways, exhibited 
distinct differences in their sequences; uncontaminated treatment groups (CL, KL) showed a 
similar proportion of sequences in both OTU and ASV analysis while the contaminated 
treatment group (CH) showed a significant decrease in proportions of sequences in ASV  

FIG. 4 Differential abundance of microbes between treatment areas for OTUs and ASVs. Differential abundance of 
microbes by phylum which differed significantly between treatment areas. The bars on the left represent phyla which had 
increased abundance in contaminated zones relative to uncontaminated zones, and the bars on the right represent phyla which 
had decreased abundance in contaminated zones relative to uncontaminated zones. Both plots show decreases in abundance 
of Bacteroidetes and Actinobacteria, whereas (A) shows increases in Desulfobacterota and Campilobacteriota, and (B) shows 
a decrease in Spirochaetes and an increase in Proteobacteria. 
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FIG. 5 Relative abundance of Bacteroidetes, Firmicutes, and Proteobacteria among treatment areas for OTUs and ASVs. 
Box plots representing relative abundance of Bacteroidetes, Firmicutes, and Proteobaceria, among treatment areas with error bars 
indicating median value ± SE. For both (A) and (B), Bacteroidetes has lower abundance in CH than CL and KL. (A) differs from 
(B) in that the relative abundance across all treatment areas is ~10% higher. For both (C) and (D), Firmicutes is observed in higher 
abundance in CH than CL and KL. (C) differs from (D) in that the relative abundance across all treatment areas is ~10-15% 
higher. (E) shows a lack of identification of Proteobacteria with average abundances approximating zero among all treatment 
areas. (F) Shows an increased relative abundance of Proteobacteria in CH. 
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analysis when compared to the OTU counterpart. When CH and CL treatment groups were 
compared using the Welch’s t-test, no particular pathways exhibited significant differences 

FIG. 6 Mean relative abundance of microbial taxa at the phylum level for OTUs and ASVs. (A) mean relative 
abundance at phyla level for analysis by OTU showing the identification and abundance of 8 different phyla. (B) mean 
relative abundance at the phyla level for analysis by ASV showing the identification and abundance of 5 different phyla. 
(A) differs from (B) in that analysis by OTU resulted in the identification of three additional phyla, Campilobactera, 
Cyanobacteria, and Desulfobacteria.  
 
 

FIG. 7 ASV functional profiling exhibits differences when compared to OTU profiling. Pathways shown are ‘BIOTIN-
BIOSYNTHESIS-PWY’, ‘CODH-PWY’, ‘GLYCOL-GLYOXDEG-PWY’ from left to right in both (A) OTU and (B) ASV 
datasets. The CH treatment group exhibited a significant decrease in proportion of sequences, while CL and KL treatment 
groups exhibited minimal change when comparing the two datasets. Statistical significance was assessed by ANOVA. 
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between the two modes, and both showed similar trends (Figure 8A). Interestingly, when CH 
and KL treatment groups were compared using the Welch’s t-test, three pathways exhibited 
altered trends: the superpathway of glycolysis and Enter-Doudoroff pathway, the colanic acid 
building block biosynthesis pathway, and the superpathway of glycolysis, pyruvate 
dehydrogenase, TCA, and glyoxylate bypass. ASV-based analysis identified the CH group as 
exhibiting a lower mean proportion of these pathways compared to the KL group (Figure 
8B). In both analyses, the uncontaminated areas displayed notable similarities in vole gut 
microbiome functional profiles, regardless of the geographical split. The contrast between 
functional profiles of the contaminated and uncontaminated treatment groups suggest that gut 
microbiome functionality is influenced by radioactivity.  

 
 

The results from PICRUSt2 analysis provide a weighted Nearest Sequences Taxon Index 
(NSTI) number for the direct comparison of the accuracy of predicted metabolic pathways to 
predicted pathways in model organisms (24). The NTSI value generated from analysis by 
OTU had a mean of 0.161 ± 0.029 while the mean NSTI value from ASV-based analysis was 
0.175 ± 0.059. A lower NSTI number indicates higher accuracy in predicted pathways relative 
to a model organism, suggesting that the functional pathways predicted from OTUs were 
more accurate than the pathways predicted from ASVs. Comparing results from OTU- and 
ASV-based analysis, functional profiling exhibited minute differences in most pathways, 
although there were still several pathways exhibiting significant decreases in functional 
sequence proportions in the CH treatment group following ASV-based PICRUSt2 analysis.  

 
DISCUSSION 

This study sought to compare the results of ASV- and OTU-based metabarcoding analysis 
using a dataset from Lavrinienko et al. to examine the relationship between radiation and 

FIG. 8 Two group testing in OTU and ASV. (A) OTU and ASV functional profiling between CH and CL treatment groups 
show no significant difference, exhibiting similar trends in the mean proportion. (B) OTU and ASV functional profiling 
between CH and KL treatment groups show significant differences in three pathways - ‘GLYCOLYSIS-E-D’, ‘COLANSYN-
PWY’, ‘GLYCOLYSIS-TCA-GLYOX-BYPASS’ - with the CH treatment group exhibiting lower mean proportion compared 
to the KL treatment group. Statistical significance was assessed by Welch’s t-test. 
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effects on the bank vole gut microbiota (8). Our study aimed to replicate the analyses 
performed by Lavrinienko et al., including alpha and beta diversity through the QIIME2 
pipeline, as well as determination of functional profiles using PICRUSt2. PICRUSt2 is 
particularly appropriate for our study given it has been updated to allow for the use of ASVs, 
while the analysis conducted by Lavrinienko et al. utilized PICRUSt1, which was limited to 
OTUs at the time.  

Similar results for ASV and OTU analysis based on alpha diversity metrics, with a 
potential novel finding using ASVs. When looking at evenness measures for each treatment 
area, no significant differences were found between OTU and ASV analysis. However, an 
examination of overall evenness indicated that there was a net decrease when comparing OTU 
analysis to its ASV counterpart. Both analyses were also able to identify a significant 
difference between the CH and KL treatment groups when measuring Faith’s PD. Notably, 
ASV analysis identified a significant difference for Faith’s PD in the two low-radiation areas, 
CL and KL. This was not detected in the OTU-based analysis. The results of this study very 
closely mirror findings from general literature, as Nearing et al. found the results of ASV 
analysis to be broadly identical to OTU analysis, with minor differences in certain metrics of 
alpha diversity and unweighted UniFrac (33). This supports the notion that ASV analysis 
yields a slightly richer interpretation than OTU analysis (34, 35). As mentioned, we believe 
that the potentially increased acuity can be attributed to the finer thresholds of ASV analysis, 
which can be separated by single base changes (34). 

No major differences in beta diversity when comparing ASV and OTU analysis. 
PCoA plots of Bray-Curtis Dissimilarity and weighted UniFrac for both ASV and OTU 
analyses exhibited near-identical clustering, though there was greater inter-individual 
variation in the CL and KL groups than in the CH group when conducting the OTU analysis 
(Fig 2A, 2B). With regard to the degree of separation between groups, it is possible that ASV 
analysis produces a clearer representation. A plausible mechanism for the minor discrepancy 
could be attributed to the 97% clustering threshold of OTU analysis, thus leading to the wider 
gap observed. In contrast, the finer resolution of an ASV-based analysis could potentially 
narrow this gap. 

Slight variations in differential abundance, potentially due to database differences. 
The differential abundance plots show similar decreases in the abundance of Bacteroidetes, 
and the ASV-based plot shows an increased abundance of Proteobacteria in CH, which is 
consistent with the analysis performed by Lavrinienko et al. These differential abundance 
plots differ from Lavrinienko et al. in the identification of significantly different abundances 
of Desulfobacterota, Campilobacerota, Spirochaetes, and Actinobacteria, which are not 
recognized as having significantly different abundance by Lavrinienko et al. We suggest that 
the difference in detected phyla is due to the newer taxonomic database, SILVA, as well as 
the use of the outdated Greengenes 97% OTU reference sequence database used to assign the 
OTUs in our study. 

Functional metabolic profile assignment by PICRUSt2 results in similar pathways 
between ASV analysis and OTU analysis. Overall, there are no major differences in the 
pathways analyzed. BIOTIN-BIOSYNTHESIS-PWY, CODH-PWY, and GLYCOL-
GLYOXDEG-PWY are the only pathways where the CH treatment group decreases in 
sequence proportion in the ASV analysis, as compared to the OTU analysis. We believe that 
these findings are of increased accuracy. Further, the creators of PICRUSt2 note that 
compatibility with ASVs is one of the key contributors to its superiority over PICRUSt1, due 
to the finer resolution in denoising (25).  

 
Limitations The primary limitation of our study is the lack of vole gut microbiome data to 
compare our results to aside from Lavrinienko et al. A useful analysis to undertake would be 
the comparison of our results by OTU and ASV analysis to several other papers to determine 
the validity of the observed differences between modes of analysis. Performing the analysis 
on multiple standardized datasets would also help average out variations in sampling. Another 
limitation of our study is that we used an out-of-date 97% OTU reference sequence database 
for assigning our OTUs. This was done in an effort to have comparable OTU data to 
Lavrinienko et al., but resulted in outdated taxonomic assignment.  
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Conclusions The current study investigates the impact of using ASV analysis versus an OTU-
based approach. In comparing various measures of alpha and beta diversity and functional 
metabolic profiles, it appears that an ASV-based approach provides a more detailed inference 
of the microbial communities present, filling in some of the gaps that can be missed via an 
OTU-based analysis. These findings lend support to our hypothesis and are in agreement with 
the current body of literature, which suggests that an ASV-based analysis should take 
precedence over OTU-based methods (25, 34). This is largely driven by the capability of ASV 
analysis to capture higher resolution of differences between gene sequences, thereby enabling 
a higher level of detail with regard to microbial diversity analysis. 
 
Future Directions Based on the findings of this study, a few prominent avenues may be 
explored. A cross-examination among various datasets may pinpoint whether certain 
underlying trends exist. Consequently, this may help to predict when one might expect to 
observe a large discrepancy between ASV and OTU analysis. Armed with this knowledge, a 
retroactive application of ASV analysis could lead to more nuanced findings without the need 
for further data collection, which can often be resource-intensive. 
 Further, the question of whether ASVs should overtake OTUs and become the sole 
choice for microbial analysis remains unanswered. As observed in our study, diversity metrics 
were slightly enhanced with the use of ASV analysis. Proponents of ASV analyses also 
indicate advantages with technical aspects such as required computational power (34). Yet 
others such as Schloss suggest that the differences may be due to artificial separation (36). 
Certainly, much consideration is needed to balance the potential drawbacks and technical 
advantages that might be conferred when choosing between analyses, which may ultimately 
vary on a case-by-case basis. 
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