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SUMMARY   Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor 
dysfunction with co-presentation of neuropsychiatric and gastrointestinal symptoms prior to 
therapeutic treatments. Studies have established a relationship between PD and gut 
microbiome dysbiosis. Furthermore, recent studies show a relationship between mental health 
disorders and gut microbiome dysbiosis. Little is known on how the presence of 
neuropsychiatric disorders in PD patients can impact the gut microbiome in the absence of 
PD medication or gastrointestinal disorders. In this study, we first aimed to determine if 
antidepressant usage in PD patients was associated with alterations in the gut microbiota of 
PD patients. We then further investigated differences in gut microbiome profiles between PD 
patients who use antidepressants and those who do not. Our results indicate a significant 
difference in the beta diversity of microbiomes between PD patients who take antidepressants 
compared to those who do not. We further show that lower alpha diversity is present in groups 
that used antidepressants, and that antidepressant use was linked to enrichment of certain 
bacterial and archaeal families associated with gut dysbiosis in both PD and control groups. 
Finally, we show that PD subjects who used antidepressants were associated with a lower 
abundance of the Prevotellaceae bacterial family compared to PD patients who did not use 
antidepressants. This research can allow us to further understand associations between the 
presence of PD neuropsychiatric disorders and the gut microbiome of PD patients and, in 
turn, have clinical implications in the treatment of neuropsychiatric illnesses in PD.  
 
 
INTRODUCTION 

arkinson’s disease (PD) is a common proteinopathic neurodegenerative disorder 
clinically characterized by bradykinesia, rest tremors, rigidity, and postural disturbances 
(1). These motor dysfunctions result from the progressive formation of Lewy Bodies, 

aggregates of protein alpha-synuclein, in the substantia nigra pars compacta, which in turn 
leads to loss of dopaminergic neurons in those regions and abnormal dopaminergic 
neurotransmission in the basal ganglia motor circuit (1, 2). In addition to the classical motor 
symptoms, PD can also lead to various neuropsychiatric symptoms such as sleep difficulties, 
depression, anxiety, motivational deficits (apathy), and fatigue, as well as gastrointestinal 
disorders including constipation, gastroparesis, and reduced colonic transit time (3).  

Previous studies have well established associations of PD with disruptions in the 
homeostasis, diversity, or functional distribution of microbes in the gut, known as gut 
microbiota dysbiosis (4). For instance, Helicobacter pylori are much more prevalent in PD 
patients and have shown to impede treatment of PD motor symptoms by hindering PD drug 
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absorption (5). In another study, fecal samples observed in PD patients showed a significant 
reduction in the bacterial family Prevotellaceae, which correlate to diminished levels of 
beneficial short chain fatty acids (SCFAs), and an increase in Enterobacteriaccae, which have 
associations with the severity of postural instability and gait trouble (6). Further, Cirstea et 
al. discovered notable bacterial clusters that correlated with gut function in PD. Their results 
identify novel inverse associations of reduced butyrate producing bacteria in PD patients with 
increased constipation and colonic transit time (7). Furthermore, they found positive 
correlations between elevated levels of p-cresol and phenylacetylglutamine, two protein 
degradation byproducts by the gut microbiota, in PD patients, with firmer stools and 
constipation severity (7). However, when considering the associations between PD and gut 
dysbiosis, these studies are limited as they involve confounding variables that include the use 
of PD medication, unknown dietary intake, and the presence of gastrointestinal disorders at 
the time of microbial assessment. Previous research has elucidated a bidirectional mode of 
communication between the gut microbiota and the brain, known as the gut-brain axis (GBA) 
(8). Bilateral Information flow across the GBA can have implications on gut flora make-up 
and overall mental health, where disturbances or fluctuations on one end can have adverse 
effects on the other. This is evident in studies that link gut dysbiosis with several mental 
illnesses including anxiety and depression (8). Parks et al. showed that induction of anxiety 
and depression-like behaviors in mice were associated with altered gut microbiome profiles 
(9). Kelly et al., show that depression is associated with decreased microbiota richness and 
diversity, and that transplantation of gut microbe profiles from depressed patients into 
depleted microbiome rat models induced features and behaviors that were characteristic of 
anxiety and depression. However, the findings of this study are limited as the majority of 
subjects in this study were on antidepressants (10). McGovern et al. show in vivo evidence, 
in animal models, of antidepressants having the capacity to exert antimicrobial pressures, 
which may have an effect on the gut microbiome diversity (11). Zhang et al. show that 
antidepressants may have impacts on gut microbe diversity in animal models (12). However, 
very limited studies have evaluated the direct effects of antidepressants on intestinal 
microbiota in humans. Whether the impacts of antidepressants on the gut microbiome is direct 
or indirect via host pathways is yet to be understood. The use of medication represents a 
confounding variable in many studies regarding the association between depression and gut 
dysbiosis. There is a knowledge gap regarding the study of depressed patients who are 
unmedicated at the time of microbial assessment (13).  Research on the GBA is still ongoing 
and has mostly focused on gastrointestinal functions impacting the GBA (14). Less research 
has been conducted on the role that neuropsychiatric disorders play on the gut microbiota, 
especially in the context of PD. Understanding more about this bidirectional interplay 
between the gut microbiota and mental health in PD patients can provide opportunities to 
better manage neuropsychiatric disorders and improve mental health in PD therapy. 
Therefore, we aim to determine if the neuropsychiatric disorders of PD, specifically fatigue, 
sleep disorders, antidepressant use and apathy, play a role on the gut microbiota of PD 
patients.  

Here, we use PD metadata retrieved from the Cirstea et al. paper to conduct our research 
(7). Due to the close association between gut microbiota dysbiosis and the onset of 
neurological disorders via the GBA (8), we hypothesize that PD patients who have the 
neuropsychiatric disorders of fatigue, sleep problems, apathy or antidepressant use will be 
associated with altered gut microbial communities. If the hypothesis is correct, then the 
microbiota of PD patients who have neuropsychiatric disorders are expected to correlate with 
reduced microbiome abundance and diversity. To determine a causal link between the 
neuropsychiatric disorders of PD and significant differences in the gut microbiome, future 
studies should conduct a longitudinal study. Researching the effects of neuropsychiatric 
disorders on the gut microbiome is important as it can reveal gut bacterial biomarkers 
associated with the onset of neuropsychiatric conditions. This can further inform therapeutic 
strategies aimed in preventing and treating neuropsychiatric and mental health conditions, 
especially in the realm of PD management.  
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METHODS AND MATERIALS 

Parkison’s Disease dataset. We obtained our Parkinson’s metadata from a cross sectional 
cohort study by Cirstea et al. on three hundred participants (197 Parkinson’s patients and 103 
controls), aged 58-71 years, to determine associations between the microbiota and 
gastrointestinal disorders commonly observed in PD patients (7). Fecal samples were 
collected from the participants for microbiome sequencing. DNA was extracted using 
QIAamp PowerFecal DNA Kits (QIAGEN 12830); further details of the DNA extraction 
protocol were not mentioned by the authors (7). The bacterial 16S rRNA V4 region was 
amplified using barcoded 515F/806R primers (forward sequence: 
5’GTGCCAGCMGCCGCGGTAA-3’, reverse sequence: 
5’GGACTACHVHHHTWTCTAAT-3’) and was sequenced on an Illumina MiSeq platform. 
Using R v4.1.2 (15), we filtered the metadata to only include the neuropsychiatric categories 
of fatigue, antidepressant use (type and dosage of antidepressants were not reported), sleep 
problems and apathy. We then converted the numerical data of the fatigue and apathy 
categories into binary “yes-no” data. We determined fatigue cutoff scores using the Fatigue 
Severity Scale (FSS), a scale recommended by the Movement Disorder Society, where a cut-
off score of 4 or more is considered indicative of problematic fatigue (16). We determined 
Apathy cut off scores using the reliable and valid Apathy Scale (AS) where scores of 14 or 
more are indicative of clinical apathy (17). We performed all analysis in this study using this 
revised metadata.  
 
Data processing and analysis in QIIME 2. In order to perform diversity analysis by 
analyzing the amplicon sequencing data for PD and control subjects, we followed the QIIME2 
workflow and analyzed both groups separately (18). We imported and demultiplexed the data 
and then determined the amplicon sequence variants (ASVs) using a truncation length of 251 
nucleotides in order to preserve the entire sequences (19). We filtered out mitochondrial and 
chloroplast sequences from the sequencing data, and subsequently filtered the metadata for 
PD subjects only and control subjects only. We then ran them independently to look at the 
diversity metrics within each group (20, 21). We followed the same steps for each set of 
patients, with all the PD subjects being run first and then the control subjects. The data for 
the subjects within the group was further filtered based on the variable being examined, with 
separate feature tables being generated for fatigue, apathy, sleep problems, or antidepressant 
usage. This caused the total number of samples based on each neuropsychiatric variable to be 
different. This was done because not all the subjects had data on all of the four 
neuropsychiatric variables, hence filtering for them all together would have greatly reduced 
the sample size. Of all the 197 PD subjects, 84 had sleep problems and 112 did not and the 
rest did not report; 66 had fatigue and 85 did not and the rest did not report; 57 consumed 
antidepressants and 139 did not and the rest did not report; 25 had apathy and 68 did not and 
the rest did not report. Of all the 103 control subjects, 27 had sleep problems and 62 did not 
and the rest did not report; 17 had fatigue and 73 did not and the rest did not report; 7 
consumed antidepressants and 83 did not and the rest did not report; 5 had apathy and 29 did 
not and the rest did not report. For each variable, we generated a tree for phylogenetic 
diversity analysis. We then ran alpha and beta diversity metrics at a sampling depth of 6000 
reads (22) and significance was determined for alpha-groups and beta-groups within each 
variable. We ran these steps for all the variables within the PD subjects and control subjects 
separately, with 8 sets of diversity metrics being generated in total. In this study, we evaluated 
Pielou’s Evenness, Faith’s Phylogenetic Diversity, Jaccard distance, Bray-Curtis distance, 
Unweighted UniFrac distance, and Weighted UniFrac distance (23-27). Pielou’s evenness 
index is an alpha diversity metric that measures evenness by considering the abundance of 
each species in a given environment (28). Faith’s Phylogenetic Diversity is another alpha 
diversity metric that assesses the phylogenetic relatedness among the species in a given 
environment (29). Jaccard index is a beta diversity metric that considers the presence or 
absence of species to compare diversity of environments (30). Bray-Curtis index is another 
beta diversity metric that accounts for the abundance of the species in each environment (30). 
Unweighted UniFrac is a beta diversity metric that accounts for both presence and absence of 
species and their phylogenetic relatedness when comparing diversity between environments 
(27). Weighted UniFrac is another beta diversity metric that accounts for species abundance 
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as well as their presence and absence and phylogenetic relatedness (31). We calculated 
significance for the alpha-diversity metrics using pairwise Kruskal-Wallis test, conducted 
through the QIIME2 program. We calculated significance for the beta-diversity metrics using 
PERMANOVA through the QIIME2 program, running 999 permutations for each test. Prior 
to calculating p-values to determine significance, we determined Pseudo-F values for each 
metric. These results are available in Supplementary Tables 2 and 3.  
 
Statistical analyses in R 
We performed all statistical analysis using R (version 4.1.2; 15). We used the following 
packages in R to perform the taxonomic analysis and the relative and differential abundance 
analysis: here (32), tidyverse (33), microeco (34), cowplot (35), file2meco (34), picante (36), 
GUniFrac (37), ggalluvial (38), ggh4x (39), ggpubr (40), randomForest (41), igraph (42), 
rgexf (43), htmlwidgets (44), phyloseq (45), indicspecies (46), ape (47), DESeq2 (48), vegan 
(49), and qiime2R (50).  
 
Taxonomic analysis of PD and control subjects based on their antidepressant use.  To 
gain insight into taxonomic relationships (i.e. shared and unique taxa) between PD and control 
subjects based on antidepressant use and to test if antidepressant use had an effect on PD and 
control subjects, we performed a four-way taxonomic Venn analysis using R. We used the 
trans_venn class of the microeco package to analyze the number of shared features or ASVs 
between categories. 
 
Indicator taxa analysis of PD and control subjects based on antidepressant use. To 
determine if there was an enrichment of certain taxa depending on the intake of 
antidepressants in PD patients and control individuals, we performed an indicator taxa 
analysis at the family level using the IndVal method (51). This statistical approach allows for 
identifying taxa that may be strongly associated with presence in a particular type of 
environment (46), in this case allowing us to identify bacterial families in the gut whose 
presence may be strongly associated with consumption of antidepressants. In particular, the 
IndVal method calculates an indicator value for each taxon based on the specificity 
(calculated as A-value, representing the degree to which a taxon is only found in a particular 
type of environment) and fidelity (calculated as B-value, representing how likely it is for a of 
the taxon to be found in other environments of similar type) for a particular environment (52). 
We imported the filtered features table, the taxonomic classification data, the metadata file, 
and the rooted phylogenetic tree into R as a phyloseq object and used the indicspecies package 
(46) to conduct the indicator taxa analysis. To assess statistical significance, the indicspecies 
package conducts permutational test to calculate a p-value for each indicator value. We 
considered bacterial families with an p-value of less than 0.05. 
 
Differential and relative abundance analysis of PD and control subjects based on their 
antidepressant use.  Prior to performing the relative abundance and differential abundance 
analysis, we used the tidyverse package to remove subjects that had unreported antidepressant 
use, and to facilitate the relative abundance analysis by adding a new column to the metadata 
which contained the disease state and antidepressant use status of each sample (e.g. a control 
subject with no antidepressant use would have Control_no as its value for this column). We 
then imported Qiime artifacts containing the ASV data, the phylogenetic tree, and the 
taxonomy data, into microeco, and eliminated samples with less than 6000 sequencing depth, 
retaining 94.3% of samples.Features with less than 0.05%  abundance were also eliminated 
in order to remove any potential noise in the data. The relative abundance data was not used 
for making statistical comparisons but to reveal the top 10 most abundant families in each 
group. The Wald test was used in the differential abundance analysis to make statistical 
comparisons between the groups. 
 
RESULTS 

PD patients that use antidepressants have significantly different gut microbiome 
compositions compared to PD patients that do not use antidepressants. In order to 
determine which neuropsychiatric factors could impact the gut microbiome, we ran diversity 
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analyses using the QIIME2 pipeline. After performing alpha and beta diversity analysis, we 
determined significant results by generating p-values for each of the metrics tested. The 
results of this analysis are displayed in Table 1. Through a pairwise Kruskal-Wallis test, we 
found that microbial species richness was significantly different between PD patients who 
had high apathy and PD patients who had low apathy (p-value = 0.048), as indicated by 
Pielou’s Evenness. Most notably, however, multiple metrics (Bray Curtis p-value = 0.027, 
Jaccard p-value = 0.017, and Weighted UniFrac p-value = 0.04) indicated that species 
diversity is significantly different between PD patients who use antidepressants compared to 
those who do not. Therefore, we concentrated on the antidepressant use variable for further 
analysis. We also ran diversity metrics for the same variables within control subjects, but no 
significant results were found (Supplementary Table 1). It is important to note that the sample 
size for each variable was not equal between the control and PD group (e.g. proportion of 
control subjects with sleep problems was different from the proportion of PD subjects with 
sleep problems); therefore, the lack of significant results in the control subjects may have 
been due to this sampling bias.  

 
TABLE. 1 Alpha- and beta-diversity analysis results within PD patients. Neuropsychiatric symptoms (sleep 
problems, apathy, antidepressant use, and fatigue) and diversity metrics within PD patients. The alpha diversity 
metrics (Pielou’s evenness and Faith’s Phylogenetic Diversity) were assessed for significance using pairwise 
Kruskal-Wallis test and the beta diversity metrics (Bray-Curtis, Jaccard, Unweighted UniFrac, and Weighted 
UniFrac) were assessed for significance using PERMANOVA. P-values for each diversity analysis have been 
displayed comparing presence or absence of the neuropsychiatric symptoms.  Double asterisks (**) indicate 
significant results (p<0.05). 

 

 

Alpha Diversity Beta Diversity 

Pielou’s 
Evenness Faith’s PD Bray 

Curtis Jaccard Unweighted 
UniFrac 

Weighted 
UniFrac 

Sleep Problems 0.542 0.228 0.164 0.735 0.092 0.221 
Apathy 0.048** 0.440 0.545 0.840 0.996 0.723 

Antidepressant Use 0.142 0.909 0.027** 0.017** 0.164 0.040** 

Fatigue 0.698 0.378 0.776 0.848 0.579 0.722 
 

Fewer unique taxa present in PD and control subjects using antidepressants. 
Following alpha and beta diversity analysis, we aimed to analyze the taxonomic relationships 
between PD patients and control subjects on antidepressants and those not on antidepressants. 
To do so, we looked for unique and shared taxa across these four conditions, and visualized 
our findings in a four-way Venn Diagram (Fig. 1). We found unique and shared taxa across 
all four conditions. Most notably, we observed less unique taxa present in PD and control 
subjects using antidepressants (15% and 1.9%, respectively), compared to PD patients and 
controls not using antidepressants (36.5% and 31.5%, respectively). 

Antidepressant use is associated with the enrichment of certain bacterial families in 
control and PD subjects.  Given that unique taxa were found for each of the four groups 
(Fig. 1), we performed an indicator taxa analysis at the family level in order to identify any 
bacterial families that were strongly associated with each group (p-value ≤ 0.05). The analysis 
returned 2 bacterial (Desulfovibrionaceae and Campylobacteraceae) families for PD subjects 
with antidepressant use, and 2 bacterial (Fusobacteriaceae and Bacteroidaceae) and 1 archaeal 
(Methanomassiliicoccaceae) families for control subjects with antidepressant use (Table 2). 
All of the identified indicator families were exclusive to one group and were not shared with 
other groups. No indicator families were identified for control or PD subjects with no 
antidepressant use.  

Differential abundance analysis reveals significantly lower abundance of the 
Prevotellaceae family in PD subjects with antidepressant use. We compared the relative 
abundance of each group based on disease state and antidepressant use. Upon visual 
inspection, the relative abundance plot of the top 10 most abundant families across all 4 
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groups revealed noticeable differences in the percent relative abundance of the Prevotellaceae 
and Bacteroidaceae families (Fig. 2). In particular, both control and PD subjects with  

 

TABLE. 2 Indicator taxa of PD and control subjects that were on antidepressants. A-value (representing specificity), 
B-value (representing fidelity) and indicator value for each indicator taxon from each test group have been displayed. To 
assess significance, the P-value for each indicator value was calculated using the permutation test through the indicspecies 
package in R. All displayed p-values indicate significant results (p-value ≤ 0.05).  

Group  Indicator taxa (Phylum; Order; Family)  A-value   B-value   Indicator 
value  

p-value  

 
 

Control patients that 
were on antidepressants 

Bacteria; Bacteroidales; Bacteroidaceae 0.3427 1 0.3427 0.04 

Archaea; Methanomassiliicoccales; 
Methanomassiliicoccaceae  

0.8645 0.1429 0.1236 0.015 

Bacteria; Fusobacteriales; 
Fusobacteriaceae  

0.6656 0.1429 0.0951 0.045 

PD patients that were on 
antidepressants  

Bacteria; Desulfovibrionales; 
Desulfovibrionaceae 

0.4867 0.9123 0.4440 0.035 

Bacteria; Campylobacterales; 
Campylobacteraceae    

0.9564 0.0877 0.0839 0.05 

 
antidepressant use seemed to have lower abundance of the Prevotellaceae family when 
compared to subjects without antidepressant use. In addition, control subjects with 
antidepressant use seemed to have higher abundance of the Bacteroidaceae family when 
compared to control subjects without antidepressant use. These results suggest that there may 
be differences in the abundance of particular families in each group based on their 
antidepressant use; however, statistical comparisons would need to be made in order to assess 

FIG. 1 Taxonomic analysis of PD and control subjects based on their antidepressant use. A four-way Venn diagram 
analyzing shared and unique ASVs between PD patients not on antidepressants (green), control individuals not on 
antidepressants (orange), PD patients on antidepressants (blue) and control individuals on antidepressants (red). The trans_venn 
class of the microeco package in R was used to create the four-way venn diagram based on the number of shared features or 
ASVs between each group.  
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whether these observed differences are significant and further studies are required to 
determine whether these observations are an effect of antidepressant consumption or not. 

 

 
 

To determine whether these observed differences were statistically significant, we 
performed differential abundance analysis at the family level for each group based on their 
antidepressant use. The results revealed that indeed, the PD subjects with antidepressant use 
have significantly lower abundance of the Prevotellaceae family compared to PD subjects 
without antidepressant use (p-value < 0.001). However, this difference was not found to be 
significant for control subjects with antidepressant use. No other families that were among 
the top 10 most abundant ones across the 4 groups (including Bacteroidaceae) were found to 
be differentially abundant when comparing subjects with antidepressant use with subjects 
without antidepressant use within each disease state.  

 
DISCUSSION 

In this study, we aimed to determine whether certain neuropsychiatric disorders of PD 
have a significant effect on the gut microbiome of PD patients and control subjects. Research 
has well established a bidirectional communication between the gut and the brain via the 
GBA, however this research is mostly focused on gastrointestinal functions (9). Less papers 
have been published on the role that neuropsychiatric disorders play on the gut microbiome, 
especially in the context of PD. Studying neuropsychiatric associations and impacts on gut 
bacteria composition can provide more opportunities to prevent and treat neurological 
diseases. The results from our study show a connection between mental health of PD patients 
and their gut microbiomes, and open the door to future studies that could further shed light 
on the relationship between these two aspects of their health. 

Antidepressant use is associated with differences in gut microbiome diversity in PD 
patients. Through QIIME2 diversity analysis, we were able to determine whether any of the 
neuropsychiatric symptoms we were studying (sleep problems, apathy, antidepressant use, or 
fatigue) led to differences in the alpha or beta diversity of the gut microbiota composition of 
the subjects. The results of our diversity analysis indicate that PD subjects who were using 
antidepressants had significantly different microbial communities compared to PD subjects 
who were not taking antidepressants. Multiple metrics support this difference, with significant 
differences found in Bray-Curtis, Jaccard, and Weighted UniFrac measures of beta-diversity. 
These results suggest that antidepressant use in PD patients may cause changes in both 
microbial abundance and phylogenetic diversity of the gut microbiota. Changes in microbial 
diversity due to antidepressant use have also been reported by other studies. For example, one 
study by Lukić et al. examined the effects of five commonly used antidepressants on the gut 
microbiota in mice and they found that antidepressants reduced the richness and increased the 
beta diversity of gut bacteria compared to controls (53). A different study by Zhang et al. 

FIG. 2 Relative abundance 
analysis for top 10 most abundant 
families across all subjects based 
on their disease state and 
antidepressant use. Top 10 most 
abundant families were identified 
based on the families with the 
highest mean abundance across each 
four groups. Each bar is labeled 
based on the subject’s diseased state 
followed by their antidepressant use 
status (e.g. Control_no represents 
control subjects who do not use 
antidepressants). The microeco 
package in R was used to process 
and display the data. 
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found that there was a significant difference in microbial diversity according to Weighted and 
Unweighted UniFrac distances between antidepressant-treated rats and those who had chronic 
unpredictable mild stress induced depression (12). Overall, our results are consistent with 
what has been found in the literature, however, we did not find any significant differences in 
richness or in Unweighted UniFrac. This discrepancy may be explained in part by the 
different model systems, sample sizes, and confounding variables involved in each study.  

Antidepressant use is associated with the enrichment of certain bacterial and 
archaeal families associated with gut dysbiosis. Having established earlier that PD patients 
who were on antidepressants had a significantly different microbial diversity when compared 
to those who were not on antidepressants, we performed a taxonomic analysis to determine 
the taxonomic relationships between both groups of PD patients, and included the control 
individuals for comparison purposes. Our findings indicate that there were unique and shared 
taxa across all four conditions. This result suggests that the unique taxa in each group might 
be a driver of the microbial diversity difference found in both our beta diversity analysis, and 
Cirstea et al. (7). Moreover, our findings also show that there was less unique taxa present in 
both PD and control subjects using antidepressants, than in PD patients and control 
individuals that were not on antidepressants. In order to further identify the taxa that drove 
this result, we performed indicator taxa analysis. The results of the analysis suggested that 
antidepressant use may be associated with alterations in gut microbial composition, involving 
the enrichment of certain bacterial and archaeal families (Table 2). More specifically, the 
Bacteroidaceae, Methanomassiliicoccaceae, and Fusobacteriaceae families were found to be 
enriched in control individuals that were on antidepressants. On the other hand, the 
Desulfovibrionaceae and Campylobacteraceae families were found to be enriched in PD 
patients that were on antidepressants. While each of the identified indicator families were 
found to be exclusive to their respective group, there are important differences in their 
specificity (i.e. A value) and fidelity (i.e. B value) parameters. For control subjects that were 
on antidepressants, the Bacteroidaceae family has the highest fidelity but lowest specificity, 
while the archaeal Methanomassiliicoccaceae family has the highest specificity, but equally 
low fidelity as the Fusobacteriaceae family. The Bacteroidaceae family may be considered as 
the most reliable indicator family for this group because it has the highest indicator value, 
which considers both the specificity and fidelity of each family. Regarding PD patients that 
were on antidepressants, the Desulfovibrionaceae family has the highest fidelity but the 
lowest specificity in the group, whereas the Campylobacteraceae family has the highest 
specificity but lowest fidelity in the group. Since the Desulfovibrionaceae family has the 
higher indicator value, it may be considered as the most reliable indicator family for PD 
subjects with antidepressant use. The fact that no indicator families were found for both PD 
and control subjects that were not on antidepressants could mean that there were no bacterial 
or archaeal families that showed specificity and/or fidelity for either of those two groups. 
Because more diverse groups of organisms are present at higher taxonomic ranks, running 
the indicator taxa analysis at higher taxonomic ranks could increase the chance of finding 
indicator taxa in the groups that were not on antidepressants. 

Furthermore, we found in the literature that all of the indicator families identified in 
control and PD patients that were on antidepressants have been shown to be associated with 
gut dysbiosis. According to Huang et al. the Bacteroidaceae family was strongly expanded in 
WT mice that had dextran sulphate sodium induced colitis (54). As reported by Pozuelo et al. 
untreated patients with irritable bowel syndrome and constipation had significantly higher 
levels of the Methanomassiliicoccaceae archaeal family (55). Moreover, the Fusobacteriaceae 
family was found to be enriched in patients with gastric cancer according to a study performed 
by Castaño-Rodriguez et al. (56). Additionally, the Campylobacteraceae family was shown 
to increase the risk of acquiring inflammatory bowel disease in a meta-analysis also 
performed by Castaño-Rodriguez et al. (57). Likewise, the genus Desulfovibrio, which 
belongs to the Desulfovibrionaceae family, has been shown to take part in the pathogenesis 
of intestinal inflammatory disorders, as reported by to Jiang et al. (58). With regards to how 
antidepressant use relates to gut dysbiosis, the systematic review by Letchumanan et al. 
suggested that the chronic use of antidepressants could cause adverse effects in patients due 
to antidepressant-associated gut dysbiosis (59). Although the precise impact of antidepressant 
treatments on gut microbiota composition remains largely unexplored, our results suggest that 
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the enrichment of only indicator bacterial families that are associated with gut dysbiosis is 
likely to be due to the intake of antidepressants in both PD and control patients. The fact that 
the use of antidepressants dysregulates the microbiome highlights the importance of 
improving the clinical efficacy of the current antidepressant therapies.  

 
Reduction in abundance of the Prevotellaceae family in subjects with antidepressant 

use. Given that there are taxonomic differences based on antidepressants use, we investigated 
the changes in abundance of certain taxa in both PD and control patients. Our differential 
abundance analysis results showed a significant decrease (Wald test p-value < 0.05) in the 
abundance of the Prevotellaceae family in PD patients with antidepressant use when 
compared to PD patients with no antidepressant use; in addition, we also found a non 
significant reduction (Wald test p-value > 0.05) in the abundance of this family in control 
subjects with antidepressant use when compared to control subjects with no antidepressant 
use. The significantly lower abundance of the Prevotellaceae family in PD subjects with 
antidepressant use may be hinting at potential associations between this family and the use of 
antidepressants in PD subjects. In addition, given that this difference was not found in control 
subjects with antidepressant use, it could also be hinting at potential associations between 
consumption of drugs for Parkinson’s Disease and the abundance of the Prevotellaceae 
family; however, this paper will be focusing on potential associations with the use of 
antidepressants.  

While we did not find any previous studies that investigated the effect of antidepressant 
use on microbiota abundance of PD patients specifically, we did find a number of studies that 
performed abundance analysis on effect of antidepressant on the microbiota through in vitro 
and in vivo models. In a meta-analysis done by McGovern et al. in 2019 it was found that 
selective serotonin reuptake inhibitors (SSRIs), as a major class of antidepressants, exhibit 
antimicrobial effects in animal models (11). In particular, a study done by Cussotto et al. in 
2019 found a depletion of the genus Prevotella (found in the Prevotellaceae family) in male 
rats treated with Fluoxetine (a SSRI) (60). While the mechanism through which SSRIs exhibit 
antimicrobial activity is not well understood (61), in vitro studies done on Staphylococcus 
aureus and Escherichia coli show that SSRIs act as efflux pump inhibitors in these bacteria 
(62, 63). Hence, while the original publication on our dataset (7) does not report which type(s) 
of antidepressants were used by the participants, a potential reason behind the reduction in 
abundance of the Prevotellaceae family in PD patients who use antidepressants could be due 
to efflux pump inhibition in the members of this family (assuming the administered 
antidepressants were SSRIs). Overall, our abundance analyses results highlight the need for 
studies that investigate the effect of antidepressant use on PD patients exclusively, as well as 
studies that further investigate the mechanisms through which antidepressants may exhibit 
antimicrobial activity in particular families of bacteria such as Prevotellaceae.  

 
Limitations Other than the disease state and neuropsychiatric measures, the original dataset 
that was used in this study included measures of multiple other physiological and dietary 
variables for each participant such as sex, age, BMI, or alcohol consumption. Therefore, one 
of the main limitations of our analysis was not controlling for these confounding variables, 
hence limiting our ability to derive more robust causal links between antidepressant use and 
microbial diversity and abundance. However, controlling for all of the confounding variables 
would have greatly decreased the sample size of our study and it would have come at the 
expense of the reliability of our results.  

In our study, we did not have data available to us showing the composition of the 
microbiotas of depressed patients before taking antidepressants. It has been shown in studies 
that depression itself can alter the gut microbiome community composition, even if the patient 
is not taking antidepressants (64). Because of this, it is possible that the dysbiosis observed 
in patients is due in part to their antidepressant medication, and due in another part to their 
depression. In order to parse apart these interactions, and determine which effects were due 
to the medication and which due to the depression, we would have to conduct a longitudinal 
study to compare the microbiome compositions at various points in these patients’ treatments. 
However, we think that with the data we did have available, we were able to show that there 
is a distinction between the microbial compositions of patients taking antidepressants and 
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those not taking antidepressants, supporting the need for future studies into the effects of the 
different variables involved. 

Another limitation was the non-uniformity in the sample size of our case and control 
groups. For example, there were only 7 control subjects who used antidepressants while there 
were 83 control subjects who did not use antidepressants; and there were 57 PD patients who 
did not use antidepressants while there were 139 PD patients who did use antidepressants. 
Therefore, such differences in the sample size of our case and control groups may have 
deviated aspects of our results.   

Lastly, another limitation of our analyses was the binary classification of our 
neuropsychiatric data. Variables such as sleep problems or antidepressant use were recorded 
in binary (i.e. yes or no) by origin, however, variables such as the FSS Fatigue Score or 
Apathy Score were converted into binary categories by us. Given that these neuropsychiatric 
symptoms exhibit a variety of levels in terms of their dosage or severity, converting them into 
binary categories for the sake of feasibility would come at the expense of generating less 
accurate or nuanced results.  
 
 
Conclusions In this study, we aimed to analyze the effect of neuropsychiatric symptoms 
(namely, fatigue, sleep problems, antidepressant use, and apathy) on the gut microbial 
diversity and abundance of PD patients. Overall, our results suggest that the use of 
antidepressants in PD patients is associated with the microbiota beta-diversity of the gut and 
may also be associated with changes in the abundance of certain taxa, namely, the 
Prevotellaceae family. In addition, our results revealed that antidepressants may be associated 
with changes in the composition of the gut microbiome given that less unique taxa were found 
in both PD and control subjects that were on antidepressants, when compared to those 
individuals who were not, and that indicator families associated with gut dysbiosis were 
identified in both PD and control subjects that were on antidepressants. However, given the 
limitations of our study and the lack of studies investigating the effects of antidepressants 
exclusively on PD patients, more research is required to draw further conclusions. 
Nonetheless, our results have laid the foundation for better understanding the scope of effect 
that antidepressants may have on the gut microbiota. 
 
 
Future Directions Future investigations could attempt to better capture potential causal 
relationships between neuropsychiatric symptoms and microbial diversity. This could be done 
by better controlling for confounding variables such as dietary or physiological factors as well 
as maintaining better sample size uniformity among case and control groups. This would 
require access to a more extensive dataset than ours so that controlling for confounding 
variables would not come at the expense of a small sample size. Furthermore, future projects 
could zoom into the effect of antidepressant use on microbial diversity by focusing on specific 
types of antidepressants or specific doses of antidepressants, hence allowing for deriving 
more detailed results on this topic. In addition, future projects could investigate other 
neuropsychiatric symptoms (such as anxiety, agitation, or hallucinations) and analyze the data 
using other diversity metrics (such as Shannon’s index which accounts for both richness and 
evenness (65)), hence allowing for extending the scope of analysis in this topic.  
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