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SUMMARY   The climate crisis has driven the expansion of oxygen minimum zones (OMZ) 
in oceans worldwide. OMZs disproportionally effect oceanic biological nitrogen loss, 
contributing to a global 50%, while only comprising of 7% of total volume.   As such, it is 
becoming increasingly important to understand the effects of deoxygenation on marine 
microbial communities. These microorganisms play a major role in nutrient cycling by 
catalyzing geochemical reactions that maintain the levels of nutrients required to sustain 
marine life. However, the growing prevalence of OMZs is known to influence the microbial 
composition of marine environments, thereby causing an imbalance in the reactions such as 
ones pertaining to the nitrogen cycle. This study aims to address this concern by identifying 
microbial taxa at various depths of the Saanich Inlet, an OMZ in British Columbia, Canada 
that serves as a model ecosystem for global deoxygenation. Using the TreeSAPP 
metagenomic pipeline, microbial communities from the Saanich Inlet containing the 
denitrification genes napA, narI, nirK, norB, and nosZ were taxonomically classified at the 
phylum level. Gene abundance and alpha diversity was quantified and compared at the 
metagenomic and metatranscriptomic levels.  Metagenomic and metatranscriptomic insights 
revealed that many species that were capable of executing reactions in the nitrogen cycle, 
often did not perform these reactions Additionally, a regression model was created that 
depicts a high degree of association between diversity of taxa that contain a specific 
denitrification gene, differences in ‘omic type, and energy of a denitrification metabolic 
reaction. This analysis provides insight into the roles of microbial communities involved in 
the denitrification pathway, and can be applied to broader OMZs to better understand the 
implications of deoxygenation on global nutrient cycling. 
 
INTRODUCTION 

he levels of dissolved oxygen and its dispersal patterns in the world’s oceans have a 
direct impact on the biogeochemical flow of essential elements and nutrients in marine 
ecosystems, as well as on the aquatic life within them (1, 2). With global atmospheric 

temperatures rising due to climate change, the Earth’s oceans are warming as well (3). 
Ongoing surveys show that this phenomenon is already beginning to lead to ocean 
deoxygenation events across the subarctic Pacific, an ocean basin that is bordered on one side 
by eastern Asia, and by western North America on the other (3). To study ocean 
deoxygenation and its potential effects on marine wildlife and nutrient flow, scientists often 
utilize oxygen minimum zones (OMZs), marine environments naturally low in dissolved 
oxygen levels often formed as a result of high oxygen consumption to ocean ventilation ratios 
(4). These OMZs provide a model ecosystem for the study of how marine microorganisms 
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co-exist and evolve within deoxygenated ocean columns and the role they may play in the 
flow of essential elements, such as nitrogen, sulfur, and carbon in such environments (5). 

One well-studied example of an OMZ is the Saanich Inlet, a seasonally anoxic fjord 
situated off the coast of Vancouver Island in British Columbia, Canada (2). During the spring 
and early summer months, the deep waters within the inlet become increasingly anoxic due 
to higher primary productivity in the surface waters (2). As the later summer months 
approach, the inlet is replenished with oxygenated water that displaces the anoxic deep waters 
upwards, causing changes in the redox chemistry of the environment (2). This seasonal 
stratification of oxygen within the Saanich Inlet makes an appropriate model ecosystem for 
the study of ocean deoxygenation (2). Under such low oxygen conditions in the ocean, nitrate 
(NO3

-) often acts as a common electron acceptor in anaerobic microbial metabolism (6). In 
fact, OMZs provide 30-50% of the global fixed nitrogen (N) loss while only making up 7% 
of oceanic volume (6). The use of NO3

- as an electron acceptor can lead to N2 production and 
hence N-loss, via a microbe-catalyzed denitrification pathway and through intermediate 
compounds nitrite (NO2

-), nitric oxide (NO), and nitrous oxide (N2O) (6). The other potential 
pathway of N2 generation in OMZs is anaerobic ammonium oxidation (anammox), a redox 
reaction coupling reduction of NO2

- with the oxidation of ammonium (NH4
+), once again 

catalyzed by marine microbes (6) (Figure 1). 

 
 

Both denitrification and anammox pathways have different outcomes on the carbon cycle, 
and the potential leakage of intermediate nitrogen species (6). Incomplete denitrification, for 
instance, can lead to the production and release of N2O, a potent greenhouse gas, into the 
environment (6). It is becoming increasingly relevant to understand how climate change can 
result in ocean deoxygenation, and in turn, drive the release of greenhouse gasses into the 
environment. Moreover, the depth-based stratification of the microbes that catalyze these 
reactions may be closely linked with the distribution of molecules such as nitrate and 
ammonium throughout the water column (7). Hence, a major part of this understanding can 
be acquired through the study and analysis of such inter-microbial interactions, and intra-
microbial gene abundances present in OMZs. 

With these important considerations, this study aims to utilize a subset of metagenomic 
data collected from the Saanich Inlet to analyze the distribution of microbial organisms 
involved in the denitrification pathway across several depths. Each step of the denitrification 
pathway involves a variety of microbial genes in its catalysis. This paper will focus on napA 
and narI encoding the nitrate reductase enzyme, nirK for nitrite reductase, norB for nitric 
oxide reductase, and finally nosZ for nitrous oxide reductase (8). This analysis will provide 
insight into the distribution and potential compartmentalization of the reactions of the 
denitrification pathway within the context of the microbial species present in the Saanich Inlet 
dataset. This will be achieved utilizing taxonomic classification, phylogenetic analysis at the 
phylum level, quantification and comparison of gene abundance and expression, as well as 
analysis of alpha diversity metrics.  Depth-based analysis could signify whether certain steps 
of the pathway are partitioned into different depth columns in the Saanich Inlet. Lastly, 
analysis on differential diversity in taxa that contain a denitrification gene, depending on the 
energy output of the metabolic reaction, will be explored.  Overall, this study will provide 
insight into the roles of microbial groups in the nitrogen cycle within this OMZ model 
ecosystem, and the differences in insights given by differences in ‘omics groups. 

FIG. 1 Denitrification Pathway. 
An illustration of the denitrification 
pathway as well as certain 
associated reaction pathways. 
Genes important to our analysis 
pipeline are labeled with their 
respective step in the pathway. 
Figure adapted from Alvarez et al. 
and with permission from the 
American Society of Microbiology 
(ASM) (43). 
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METHODS AND MATERIALS 

Sample collection and sequencing overview. Water samples for the geochemical data were 
collected on February 18, 2006 from sample collection station S3 (48°35.500 N, 123°30.300 
W) in Saanich Inlet during the 72 cruises aboard the MSV John Strickland, as previously 
described (5). To briefly reiterate, samples were collected from 7 different depths including 
10, 100, 120, 135, 150, 165, and 200 m using Niskin or Go-Flow bottles for dissolved gasses 
and cell counts. Conductivity, temperature, and depth (CTD) instruments and the resulting 
data were used to determine salinity, density, and dissolved O2. Additional geochemical data 
from the water samples were collected including CH4, H2S, N2O, NH4

+, NO2
-, NO3

- 

concentrations as previously described (5). Cell counts from 10 mL water were measured 
using flow cytometry (5).  

Water for the metagenomic and metatranscriptomic data was collected at the same depths 
in Saanich Inlet on August 1, 2012. Biomass from the water samples was collected through a 
0.22 μm Sterivex filter and total genomic DNA and RNA were extracted from the filters (9). 
Shotgun Illumina libraries were generated using the genomic DNA and cDNA and paired end 
sequenced on the Illumina HiSeq platform with 2x150bp technology (9).  

Water for high resolution SSU rRNA was also filtered using 0.22 μm filters.  Amplicon 
sequencing libraries were generated from genomic DNA targeting the V6-V8 region of the 
SSU rRNA gene or the V4-V5 region of the bacterial and archaeal SSU rRNA gene. Biomass 
samples were then further sequenced using the Illumina MiSeq platform (9). cDNA was 
prepared through reverse transcription of the RNA to reveal metatranscriptomic insights on 
our data set.  

For single-cell amplified genomes (SAGs), water was collected on August 9, 2011 from 
Saanich Inlet at 100, 150, and 185 m depths. The water was filtered through a 40 μm mesh 
and sorted microbial single-cells were amplified using Multiple Displacement Amplification 
and sequenced using the Illumina HiSeq 2000 system (10).  Following, SAGs were 
taxonomically characterized by screening against previously generated amplicon sequencing 
libraries.   
 
Genomic assembly. Raw metagenomic and metatranscriptomic sequence reads for each 
depth were processed, quality controlled, and filtered using Trimmomatic (v.0.35) (11). The 
filtered reads were then assembled into contigs using MEGAHIT (v.1.1.3) (12). Binning and 
metagenome-assembled genomes (MAGs) generation was done using MetaWRAP (v.1.2.4) 
(13). Taxonomy was assigned using GTDB-TK v1.4.0 with the reference data version r95 
(14). The 219 bins were subsequently updated with sample IDs and concatenated. 
SAGs were assembled using a different methodology than MAGs.  The single cell sequencing 
reads were filtered and trimmed using Trimmomatic v0.03 and assembled using SPAdes 
(v3.9.0) (15). Quality control steps were done using CheckM (v.1.0.5) and ProDeGe v2.3.0. 
154 SAGs with > 50% completeness and < 10 % contamination were selected for further 
analysis. Taxonomic classification was done using GTDB-TK v1.4.0 and the SAGs were then 
updated with sample IDs and concatenated (14).     
 
Phylogenetic analysis and abundance. Phylogenetic trees were created using each gene 
within the denitrification pathway selected as functional anchors.  The TreeSAPP pipeline 
was executed to perform the analysis for both metatranscriptomic and metagenomic data in 
parallel (16).  Firstly, reference packages from the command treesapp create were previously 
developed to form a multiple sequence alignment, hidden markov model, taxonomic lineages, 
and phylogenetic trees of reference amino acid sequences. Reference sequences were 
published and previously validated amino acid sequences to represent each denitrification 
gene (16).  The treesapp create pipeline utilizes the RAxML-NG auto MRE for phylogenetic 
inference, with the default minimum bootstrap number of bootstraps necessary.  Pre-created 
reference packages were compared against a small TIGRFAM seed sequence database using 
treesapp purity, to ensure that the reference packages accurately represent their targeted gene 
of interest (17). 

 To further increase the quality of our reference packages, we utilized publicly available 
sequences from UniProt specific to a gene of interest (18).  These sequences were classified 
with treesapp assign, where homologous proteins are aligned in a profile HMM, and placed 
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into the reference phylogeny using EPA-NG (19). Here, sequences are then given a 
recommended taxonomic rank based on their lowest common ancestor of their descendants.  
Classified UniProt sequences were then used to update our gene’s reference package.  Purity 
was evaluated again for UniProt updates sequences. 
Following, SAGs were classified using treesapp assign, and classified sequences were used 
to update our gene reference packages. Updating the gene reference packages with SAGs is 
vital to first introduce non-contaminated taxa to their respective phylogenetic trees.  
Nonetheless, the SAGs data was not investigated in downstream analysis in the context of 
this study. Another assign and update cycle was executed with the MAGs data.  A final purity 
check was done to evaluate the reference package. However, updates and purity checks were 
unsuccessful in running norB files through treeSAPP due to issues with the original reference 
package and the original treeSAPP software.   Lastly, non-binned metagenomic contigs and 
metatranscriptomic data were classified.  Classified data was used as inputs for the treesapp 
abundance command to determine transcripts per million (TPM) abundances for each taxon 
and depth.  Abundance data was then visualized with R (v.4.2.0), and the dplyr and ggplot2 
packages (20). 
 
Alpha diversity analysis. TPM values for taxa at each gene and depth were used to represent 
abundance.  This data was inputted to estimate Shannon alpha diversity (H’) for 
denitrification genes at each depth (21).  Shannon alpha diversity is calculated by the 
following equation:  
 

 
 
Here, i represents a taxa group containing a gene within a specific depth, while TPM ratio is 
represented by pi. This measurement accounts for both richness and evenness within a specific 
sample. Diversity analysis was executed on both metagenomic contigs and 
metatranscriptomic data.  Genes without any abundant taxa at a particular depth were filtered 
out, due to the redundancy to calculate diversity on these groups.  
   
Modeling the association between Standard Gibbs free energy of a denitrification gene’s 
metabolic reaction and the diversity of taxa that contain the gene.  For each denitrification 
gene analyzed, standard Gibbs free energy of reaction values (ΔfG˚) of their gene products 
were obtained and used from literature (22) (Supplementary Table 1).  ΔfG˚ values acted as 
an explanatory variable, with H’ of taxa containing the gene acting as the response variable.  
To analyze variance due to the differences in abundances from metatranscriptomic and 
metagenomic data within a single model, a dummy variable was utilized with the baseline 
datatype being metagenomic data. This was used in a simple regression model minimizing 
for mean squared error (MSE), represented by the parametrized equation: 
 

             
          

Here, H’ is the predicted Shannon diversity of the taxa that contain that gene, and D represents 
whether the data is from a metatranscriptomic sample.  A quadratic term was utilized to lower 
heteroscedasticity and nonlinearity at higher ΔfG˚ values.  Further polynomial terms were not 
added, since observed R-squared values did not positively change.  Additionally, since our 
regression model does not tconsider any additional biological predictors, further polynomial 
terms would result in lowering residuals towards unexplained variance within a single sample, 
rather than providing true insight into the association of our predictors to H’ in the population.  
Qualitative properties of the model were analyzed to validate quality using diagnostic plots 
(Figure S3). 
 
RESULTS 

napA expression is dominated primarily by Proteobacteria and SAR324, with 
expression peaking between 135 meters and 165 meters. To determine the presence and 
abundance of denitrification genes across different taxonomic lineages at the phylum level, 
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metagenomic and metatranscriptomic samples collected at 7 different depths in the Saanich 
Inlet were analyzed using the TreeSAPP package for gene-centric analysis (Figure 1).  

napA, responsible for the conversion of NO3
- to NO2

-, was detected in the metagenomes 
of 10 different phyla (Figure 2A). Proteobacteria represented the most abundant napA-
containing phylum at all 7 depths, with it comprising a relative abundance minimum of 33.9% 
at 165m to 80.9% at 200m (Figure 2A). The next resolved phyla with the highest cumulative 
relative abundance were Bacteroidota and SAR324. While Proteobacteria consistently 
represented the most abundant napA-containing phyla across all depths, its relative abundance 
was notably lower at 100m and 165m (39.6% and 33.9%), with the Bacteroidota (27.8% and 
31.7%) and SAR324 (4.6% and 10.7%) primarily compensating for the decrease in 
Proteobacterial abundance.  
 

 

Interestingly, SAR324 napA expression was disproportionately greater at 135m and 
165m, comprising a relatively low metagenomic abundance at these depths (Figure 2B). In 
fact, where SAR324 only encompassed 12.0% and 10.8% metagenomic relative abundance 
at 135m and 165m, SAR324 napA expression comprised 36.7% and 43.6% of all napA 
expression at these depths. This is in stark contrast to Proteobacteria, which despite 
representing the most abundant phylum at 135m (63.1%), only constituted 16.3% of the total 
relative napA expression. Additionally, while presence of Bacteroidota was generally high at 
most depths (as high as 31.7% at 165m), napA expression by this phylum was consistently 
low across all depths with maximum expression at 10m (5.75%) (Figure 3B).  

FIG. 2 Stacked bar graphs displaying the relative abundance of denitrification genes at different depths in Saanich 
Inlet. (A) Relative abundance of napA, narI, nirK, norB, and nosZ metagenomic reads, and (B) metatranscriptomic reads. 
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Although Proteobacteria were consistently the most abundant napA-containing phylum 
at all depths, its expression of napA relative to other phyla varied across depths (Figure 3). 
Proteobacterial napA expression dominated from 10-120m, 150m, and 200m, with SAR324 
and unresolved phyla compensating for napA expression at depths of 135m and 165m (Figure 
3B). Curiously, while Proteobacterial napA expression was relatively lower at 135 and 165m, 
napA expression peaked at 150m (Figure 3B). This is in accordance with the high presence 
of Proteobacteria at this depth (Figure 3A). However, as Proteobacteria existed at similar 
levels at 200m, but did not express napA at nearly as high a level as at 150m, further 
investigation into this occurrence is needed.  

narI expression is dominated by Marinisomatota, especially at 100 meters where 
narI is almost exclusively expressed by Marinisomatota. Metagenomic and 
metatranscriptomic data revealed that13 distinct phyla were identified to contain the narI 
gene in the Saanich Inlet dataset. In the metagenomic data, Bacteroidota and Actinobacteriota 
had high abundances at various depths relative to other phyla (Figure 2A). Bacteriodota had 
a relative abundance of 76.8% at 10 m while Actinobacteriota had a relative abundance of 
34.9% at 135 m. Marinisomatota, Nitrospinota, and Proteobacteria were detected at most 

FIG. 3 Stacked line graph displaying the abundance of denitrification genes at different depths in Saanich Inlet. 
(A) Abundance of napA, narI, nirK, norB, and nosZ metagenomic reads, and (B) metatranscriptomic reads. Abundance 
is measured in transcripts per million (TPM), in which each metagenome sequence is normalized to the sum of 
abundances of all other sequences aligned to the metagenome. 
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depth levels - however, their relative abundances are low compared to Bacteriodota and 
Actinobacteriota (Figure 2A). Chloroflexi, Chloroflexota, and Deferribacteres had even lower 
abundances across all sampled depth levels as nearly negligible components of the NarI-
containing metagenome. However, a large proportion of the metagenomic phyla could not be 
resolved. While the phyla present in the metagenome at 10 m are for the most part known, 
many of the phyla at depths of 100-200m are unclassified.  

In the metatranscriptomic data, Marinisomatota was abundant compared to all other phyla 
across all depth levels except for 10 m (Figure 2B). At 10 m, Bacteroidota was the dominant 
gene expressed at 76.6% relative abundance, while Marinisomatota was absent at this depth 
level. Descending in the water column, the metatranscriptomic data at 100 m consisted nearly 
entirely of Marinisomatota. The relative abundance of Marinisomatota diminishes to reach a 
minimum of 27.5% around 135 m before gradually increasing in abundance from 135 m to 
200 m. This signifies that Marinisomatota plays a significant role in the reduction of nitrate 
at all depth levels, especially at 100 m.  

nirK expression is dominated by ammonia-oxidizing Thaumarchaeota at depths 
above 150 meters, and denitrifying Proteobacteria and SAR324 below 150 meters. The 
genomes of several taxonomic groups were found to harbor the nirK gene at all depths (Figure 
2A). A total of 18 phyla were identified, with the two dominant phyla at all depths being 
Proteobacteria and Thaumarchaeota. At depths of 10 m, 100 m and 120 m, both of these nirK-
containing phyla are almost equally as abundant. Interestingly, beyond these depths, 
Proteobacteria and Thaumarchaeota do not dominate equally, as shown by the alternating 
high peaks for these two phyla (Figure 3A). In other words, if one of these two phyla 
dominates at a given depth, the other phyla is less abundant at that depth, potentially 
indicating competition in energy resulting from utilizing the denitrification pathway. At 150 
m and 200 m, Proteobacteria are 70.2% and 86.7% abundant, respectively, whereas at 165 m, 
Thaumarchaeota are dominant with an abundance of 63.5%. Thaumarchaeota abundance 
decreases dramatically at 200 m, the deepest depth sampled. At depths of 10 m to 165 m, 
Nitrospinae represent a small fraction, between 4.17- 9.35%, of nirK-containing phyla. 

However, nirK abundance in the metagenome does not directly reflect its abundance in 
the metatranscriptome. At depths of 10 m to 150 m, Thaumarchaeota represents >95% of all 
nirK expression in the samples, while Proteobacteria expresses approximately the remainder 
(Figure 2B). In contrast, Proteobacteria represents 62% of nirK expression at 200 m. 
Interestingly, a SAR324 represented 49.8% of nirK expression at 165 m and 5.38% at 200 m, 
but is almost absent at all other depths. The dominance of nirK expression by Thaumarchaeota 
relative to all other phyla is clearly shown by the massive peak, with the greatest point of 
approximately 1750 TPM at a depth of 135 m (Figure 3B). Overall, although Proteobacteria 
and Thaumarchaeota appear to occupy the majority of nirK-encoding microorganisms in the 
metagenome together, Thaumarchaeota is the principal phylum in the metatranscriptome that 
expresses nirK. 

Proteobacteria dominate in norB abundance at both metagenomic and 
metatranscriptomic levels. 7 distinct phyla were found to contain norB in our data across 
all depths (Figure 2). Proteobacteria accounted for the majority of the occurrence of norB for 
both the metagenomes and the metatranscriptomes (Figure 2). The next most abundant phyla 
were the accumulated unclassified phyla, followed by Bacteroidetes. Interestingly, 
Proteobacteria fully represented norB abundance at a depth of 10m. no metatranscriptomic 
norB was identified at 10 m in Proteobacteria or any other phylum. Additionally, norB was 
identified in Proteobacteria at the metagenome level at 100 m at 97% relative abundance, 
however the gene was only expressed at 51% relative abundance in Proteobacteria. The 
remaining 49% of norB expression occurred in unclassified phyla. The same general pattern 
was observed with increasing depth with slight increases in norB expression in Proteobacteria 
and decreases in expression in unclassified phyla until about 150 m depth where the 
expression of norB in Proteobacteria remained high (Figure 2). The occurrence of 
metagenomic norB remained relatively consistent in Proteobacteria with the least amount 
(93%) identified at 165 m. Metagenomic and metatranscriptomic norB was exceedingly low 
in the remaining classified phyla, with the most notable being 4% expression in Bacteroidetes 
at 135 m. The relative abundance for norB in TPM showed two peaks at the metagenomic 
level in Proteobacteria (Figure 3). The highest peak was at 150 m depth, followed by 200 m. 
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The metatranscriptomic relative abundance in TPM had a single peak in Proteobacteria at 200 
m (Figure 3).  

NosZ expression is highest in the Proteobacteria and SAR324 phyla at a depth of 
165 meters.  

At the phylum level, nosZ was detected in the metagenomes of 9 phyla (Figure 2). At a 
depth of 10 m, no sequences met the alignment quality cut off, hence relative abundance data 
were only available for depths of 100 m onward. A relative abundance value of 0 was used 
as a placeholder to maintain consistency across abundance plots for all genes. 

The proportion of the metagenome that could not be resolved at the phylum level across 
all depths did not exceed 2.3 % of the metagenome and 0.3% of the metatranscriptome.. At 
all depths except 10 m and 165m, Proteobacteria represented the phyla with the highest 
relative abundance for both the metatranscriptome and metagenome, with peaks at 150 m and 
200m in the metagenome. At 150 m, Proteobacteria represented 93.9% of nosZ expression. 
However, at 165 m, SAR324 became the dominant phyla, representing 55.7% expression 
compared to 42.1% by the Proteobacteria (Figure 2). For these two phyla, trends in increases 
and decreases in relative abundance in the metagenome corresponded to those seen in the 
metatranscriptome.  

At 100 m  nosZ expression is dominated by the Marinisomatoa and SAR324, representing 
64.3% and 35.7% of the metatranscriptome respectively, compared to 8.8% and 20.1% of the 
metagenome respectively. However, TPM counts in the metatranscriptome for all phyla were 
very close to or equal to 0 for all depths, except for those of the Proteobacteria and SAR324 
from 120 m and greater. A maximum TPM of 91 at 165 m from the SAR324, whereas the 
TPM originating from the Proteobactiera was higher at the remaining depths (Figure 3B). 
Despite using N2O as a substrate, nosZ expression appears to peak at depth of 165 m, whereas 
a maximum N2O concentration of 18.1 μM is observed at 100 m (Figure S1). The 
concentration of N2O decreases to 0 μM at 200 m, which was also found to correspond to a 
decrease in the metatranscriptomic TPM counts in both the Proteobacteria and SAR324 
(Figure 3B). Of the Proteobacteria and SAR324, these peaks were attributed to one order for 
each phyla, SZUA-229 and SAR234, respectively (Figure S2). SAR324 could be resolved to 
the genus level where the sole contributing peak was from the UBA3442 genus.  

Differing patterns exist in depth-based Shannon diversity values between the 
metagenomic and metatranscriptomic data for all five genes.  As part of our overarching 
analysis pipeline, we looked into observing how Shannon diversity values for each gene 
changed as depth increased. We generated figures for both metagenomic and 
metatranscriptomic Shannon diversity for all five genes (Figure 4). In the metagenomic data, 
all five genes, napA, narI, nirK, norB, and nosZ peak in abundance at 165m, although to 
varying degrees. Furthermore, both narI, and nirK abundance experience a dip: narI from 
10m to 150m, nirK from 120m to 150m, before this sudden increase in abundance at 165m. 
Meanwhile, both norB and nosZ experience a much smaller increase at this depth as compared 
to the other three genes. 

In the metatranscriptomic data however, the patterns are quite different. While both nirK 
and norB still experience the peak in abundance at 165m, these peaks have shifted to 120m 
for napA, 10m for narI, and 200m for nosZ. Moreover, nirK experiences a major dip in 
abundance in surface waters at 10m, while a similar dip occurs for norB at 120m. These 
results signify that a considerable difference exists in depth-based changes in Shannon 
diversity values for all five genes when comparing metagenomic to metatranscriptomic data. 
Although at certain depths, a gene might be extremely abundant in the genome of the 
microbial community, it may not necessarily be expressed to nearly the same extent. 
Likewise, in certain depths, although the genomic abundance of the gene may be low, it could 
be expressed to a relatively high degree. 
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Association found between a denitrification gene product’s standard Gibbs free 
energy of reaction and the diversity of taxa that contain the gene.  Since abundance data 
and taxa were evaluated for each gene of the denitrification cycle, we sought to further our 
insights gained from the cycle by also analyzing alpha diversity and for taxa that contain the 
gene. Further, we sought to utilize the diversity metrics to see if they were correlated to the 
energy output of each gene product in the denitrification cycle.  Energy output of a metabolic 
reaction can be simply quantified using standard Gibbs free energy of a reaction (ΔfG˚).  
Lastly, an additional interest was to find whether the data being metagenomic or 
metatranscriptomic had affected this relationship.    

Therefore, a regression model was utilized to address all these interests all at once (Figure 
5).  This model considers both ΔfG˚ and whether the data is metatranscriptomic or 
metagenomic, as predictors against H’.  Additionally, a quadratic (ΔfG˚)2 term was included 
in this model, to better fit the dataset.  Qualitative analysis of the residual plots and quantile-
quantile plots for this model resulted in determining that there was a slight left skew of the 
predictor distribution, and nonmonotonic nonlinear heteroscedasticity (Figure S3).  
Nonetheless, these traits were negligible enough for us to continue analyzing our model.   

An analysis of variance (ANOVA) for each predictor was done for this model (Table 1).  
Notably, both ΔfG˚ and (ΔfG˚)2 were significant in their correlation with H’ (p=0.03321, 
p=0.00815, respectively).  ΔfG˚ exhibited a negative correlation to H’, while (ΔfG˚)2 
displayed a positive correlation to H’ (-1.024*10-2 kcal/mol, 2.370*10-4 (kcal/mol)2). 
Moreover, metatranscriptomic samples were predicted to result in an H’ value that was lower 
than metagenomic samples by 1.001 (p=2.23*10-5) when holding ΔfG˚ constant.  There was 
no interaction between the sample ‘omic type and ΔfG˚ in their correlation with H’ 
(p=0.30228), indicating that the curve slope between predictors and H’ is due solely to the  
 

FIG. 4 Five graphs depicting metagenomic and metatranscriptomic Shannon diversity values at different depths in the 
Saanich Inlet water column. Data points depicted indicate sampling depths of 10m, 100m, 120m, 135m, 150m, 165m, and 
200m from left to right on the x-axis. Shannon Diversity Index is depicted on the y-axis. Metagonomic and 
metatranscriptomic data are indicated by MetaG and MetaT respectively.  
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TABLE. 1 ANOVA table to analyze the relationship between ‘omic data type, Shannon 
diversity, and standard Gibbs free energy of reaction for taxa that possess a denitrification 
gene.  

Predictor Value Error T-value P-value 
Y-intercept 2.285 0.1997 11.443 <2*10-16 

ΔfG˚ -1.024*10-2 4.698*10-3 -2.180 0.03321 
(ΔfG˚)2 2.370*10-4 8.659*10-5 2.737 0.00815 
MetaT ‘Omic Type 4.267*10-3 4.101*10-3 1.04 2.23*10-5 

Interaction between ‘Omic type and ΔfG˚ 4.267*10-3 4.101*10-3 1.04 0.3 
 
gene’s value of ΔfG˚ and residual error.  Therefore, with the ‘omic type denoted as D, the 
reduced model may be parameterized by the following equation: 

 

  
   

Additionally, the change in H’ due to ΔfG˚ may be parameterized with the following 
differential equation:  

 

    
 
Overall, this model exhibits an adjusted R-squared value of 0.6665, indicating a strong 
association of the predictors to H’ (p=1.535*10-14) (Figure 5).  In other words, approximately 
66.65% of the variability in H’ of taxa who contain a denitrification gene in a sample can be 
predicted through knowing ΔfG of that gene and what type of ‘omic data the sample is. 
 

 
 

DISCUSSION 

napA analysis highlights the lack of a discernible expression pattern with regard to 
oxygen concentration. NapA is a periplasmic nitrate reductase that contains a hexa-
coordinated molybdopterin and iron-sulfur (4Fe-4S) cofactors (23). As its name suggests, 
NapA resides in the periplasmic space of a variety of microbes and is one of a plethora of 
enzymes responsible for the first step of denitrification, the reduction of NO3

- to NO2
-. 

Proteobacterial expression of napA displays an opposite trend with NO3
- concentration 

patterns in the water column (Figure 3B). This observation is also supported by previous 
findings of Proteobacterial napA expression in stratified marine environments (24). 
Additionally, the increased Proteobacterial napA expression occurs at an anoxic depth in the 

FIG. 5 Scatter plot depicting a strong 
association between standard Gibbs 
free energy of reaction of 
denitrification genes, and Shannon 
alpha diversity in taxa that contain 
that gene.  H’ here refers to the 
predicted Shannon diversity of the taxa 
that contain each gene. From left to right, 
the values refer to napA, narI, nirK, 
norB, and nosZ. Exact ΔfG˚ (kcal/mol) 
values for each gene can be found in 
Table S1. Metagonomic and 
metatranscriptomic data are indicated by 
MetaG and MetaT respectively. 
 



UJEMI+ Abdi et al. 

September 2022   Volume 8:1-19 Undergraduate Research Article https://jemi.microbiology.ubc.ca/ 11 

Saanich Inlet, the first sampling depth in which oxygen is not present at detectable levels 
(Figure S1). This finding is somewhat unexpected as napA is generally regarded as a marker 
for aerobic nitrate reduction, where other nitrate reductases such as NarI or NarG are 
considered anaerobic markers for this reaction. Indeed, one study observed a higher 
abundance of napA expression at oxic and hypoxic levels than anoxic regions in lake surface 
sediment (25). Curiously, different studies have not necessarily observed the same trend. 
Marchant et al. detected no correlation between oxygen concentration and napA expression 
in coastal sediments (26). Similarly, a study conducted investigating denitrifiers of the 
Saanich Inlet water column also did not observe napA expression as a function of oxygen 
concentration, which is precisely what is seen in this study (27). 

Prevalent Proteobacterial napA expression is expected and may be linked to the presence 
of taxa such as SUP05. SUP05 is a largely uncultivated genus of Gammaproteobacteria and 
has been suggested to catalyze multiple denitrification reactions, ranging from nitrate 
reduction to complete denitrification (6). Moreover, SUP05 has frequently been described as 
an abundant member of the microbial community in oxygen minimum zones (28). Specific 
to nitrate reduction, evidence suggests that nitrate reduction is heavily conserved in this genus 
(28). Moreover, SUP05 has been described to be most abundant in areas of high NO2

-, 
consistent with our metagenomic and metatranscriptomic data indicating high napA presence 
and expression at the second nitrite maximum (150m) (28). SAR324 was identified as the 
next highest napA-expressing phylum at 165m. SAR324 is an uncultivated phyla (previously 
a member of the Deltaproteobacteria) and is known to be ubiquitous in the oceanic water 
column, previously shown to possess denitrifying metabolic potential (29).  Further 
investigation at lower taxonomic levels is required to elucidate the specific members of 
Proteobacteria and SAR324 responsible for napA expression.  

At a depth of 200m, Proteobacteria are shown to express napA (Figure 3B). The presence 
of Proteobacterial napA expression at this depth is altogether quite curious. As noted above, 
napA expression commonly corresponds to regions of high NO2

-
 and moderate NO3

- 
concentrations. However, at 200m, there is little to no detectable amounts of nitric or nitrous 
oxide. A plausible explanation for this observation may be due to the processing workflow 
utilized for this gene. napA is highly homologous to other protein families and analysis with 
the TreeSAPP pipeline may result in the classification of false positives. As some genes 
present in the NapA reference package are classified as sulfur-oxide reductases, it remains 
possible that incorrect classification of sulfur oxide reductases as NapA homologs resulted in 
observed napA expression at 200 m, especially considering that H2S concentrations are 
highest at 200 m. Overall, napA abundance  and expression largely supports existing evidence 
and suggests that NapA may not strictly serve as an aerobic nitrate reductase. Regardless, 
deeper investigation into napA-expressing lineages and further modification of the NapA 
reference package to mitigate false positives is warranted.  

narI metagenomic and metatranscriptomic abundance differ significantly in 
Marinisomatota Fulfilling a functional niche similar to napA, narI encodes the nitrate 
reductase gamma subunit and is involved in the reduction of NO3

- to NO2
-. Our analysis 

indicated that the phylum Marinisomatota was a key contributor to narI expression at depths 
of 100 m and below (Figure 3B). Marinisomatota were formerly referred to as 
Marinimicrobia, SAR406, and Marine group A (30). They are bacteria that inhabit OMZs 
with a particularly high abundance above the mesopelagic zone at 150-200 m in both the 
Pacific and Atlantic Oceans (30, 31). This is consistent with our analysis of the Saanich Inlet 
depth column, which indicates a peak of Marinisomatota metatranscriptomic abundance for 
around 165 m (Figure 3B). Furthermore, literature suggests that Marinisomatota prefer 
environments with a low oxygen concentration (32–34). The Saanich Inlet data corresponds 
particularly well to this behavior. With increasing depth, the oxygen concentration decreases 
(Figure 2), and this has an inverse correlation to the relative abundance of Marinisomatota in 
the metatranscriptome (Figure 3B). Notably, this rise in relative abundance is not mirrored in 
the metagenome, and we expand on this further below. Marinisomatota is an important 
contributor to the production of OMZ-associated nitrite maxima, indirectly affecting the 
activity of other nitrogen cycling processes such as anammox (31). This can be seen in our 
analyses, which indicates a high relative contribution of Marinisomatota to nitrate reduction 
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through narI expression at all depths of the water column, but especially at 100 m. At 100 m, 
nearly all narI expression is accounted for by Marinisomatota (Figure 3B). 

Interestingly, there is a notable discrepancy between the metagenomic and 
metatranscriptomic abundance of Marinisomatota. At 100 m, Marinisomatota has a relative 
abundance of 5.3% in the metagenome (Figure 2A), but a relative abundance of around 98.4% 
in the metatranscriptome (Figure 2B). This suggests that at this depth level, organisms in the 
Marinisomatota phylum may express a disproportionately large amount of narI. Conversely, 
organisms in other phyla may be expressing negligible levels of narI, causing low expression 
of narI by Marinisomatota to overshadow narI expression by other phyla.  Examining the 
data, we find that the metatranscriptomic abundance of Marinisomatota is exceedingly high 
at 594.5 TPM, followed only by Bacteriodota at 4.0 TPM and SAR324 at 2.1 TPM, indicating 
that Marinisomatota indeed expresses a disproportionately large amount of narI at this depth. 
This provides insight into the high relative contribution of Marinisomatota to nitrate reduction 
in the nitrogen cycle, and sets the foundation for future analysis and experimentation to 
identify why Marinisomatota metagenomic and metatranscriptomic abundance differ so 
significantly. 

nirK expression is dominated by ammonia-oxidizing Thaumarchaeota at depths 
above 150 meters, and denitrifying Proteobacteria and SAR324 below 150 meters. The 
nirK gene encodes a copper-dependent nitrate reductase that catalyzes the conversion of NO2

- 
to nitric oxide (NO) gas (35). The gene is often quantified in environmental samples to 
estimate the frequency of denitrification reactions (35). Microorganisms expressing nirK have 
been previously identified in OMZs owing to their metabolic diversity (36). The present study 
has identified the two predominant nirK-expressing phyla in the Saanich Inlet, 
Thaumarchaeota and Proteobacteria, which have been previously found to contain nirK in 
their genomes (37, 38). Thaumarchaeota has an important role in the nitrification cycle, in 
which these members oxidize ammonia (NH3) to NO2

-, and have been known to co-exist with 
denitrifying Proteobacteria in water columns with low O2 concentration (39). Notably, the 
current study shows that nirK-containing Proteobacteria are highly abundant at a depth of 150 
m (Figure 2, 3), where NO2 concentration is the highest in the Saanich Inlet (Figure 2), then 
abundance decreases sharply at 165 m, where NO2 concentration decreases. These findings 
are consistent with existing literature that determined that nirK gene abundance was 
positively correlated with NO2 concentration (40). These findings support the theory that 
Proteobacteria are most abundant in depths with greater NO2, but not near the surface of the 
inlet where aerobic species dominate. Conversely, Thaumarchaeota appears to dominate at 
165 m, where NO2 concentration decreases. Given that Thaumarchaeota is primarily known 
to express the ammonia monooxygenase operon amoABC for ammonia oxidation (41), it is 
surprising that this phylum contributes to >95% of nirK expression at depths above 150 m. 
Nonetheless, previous studies have found that amoABC transcription is highly correlated with 
nirK transcription (41). NH4

+ concentration is the lowest at depths above 150 m in the Saanich 
Inlet (Figure 2), which could suggest that Thaumarchaeota expresses nirK at extremely high 
levels when NH4

+ concentration is low. Here, instead of NH4
+ oxidation, Thaumarchaeota 

could be using NO2
- as an electron donor to compensate for the lack of NH4

+ sources. 
Furthermore, nirK expression by Thaumarchaeota is almost completely decreased at depths 
greater than 150 m, which supports previous findings of its aerobic lifestyle (42). Lastly, 
SAR324 was found to account for approximately 50% of nirK expression at a depth of 165 
m. Although not very abundant in the metagenome or expressed at very high levels, nirK 
expression by SAR324 is represented by a small peak at 165 m (Figure 3B) where nirK 
expression by Thaumarchaeota is almost non-existent. This provides insight into the 
metabolic versatility of SAR324, which has been found to carry out reactions to support 
alkane oxidation, heterotrophic and lithotrophic lifestyles in OMZs (29). Taken together, nirK 
abundance and expression varies with depth in the Saanich Inlet, and is carried out by 
metabolically diverse taxonomic groups. 

nosZ expression patterns signify the potential role of other molecular factors beyond 
N2O. Despite the identification of nosZ in the metagenomes of 9 taxonomic groups resolved 
at the phylum level, its expression was found to peak at a depth of 165m in both the 
Proteobacteria and SAR324, with expression being highest in the latter (Figure 3B). Such 
findings suggest that peak denitrification occurs at this depth, reinforcing previous studies in 
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the Saanich inlet (6).  Low TPM counts in the remaining phyla suggest that the conversion of 
N2O to N2 in the Saanich Inlet may be largely responsible from the metabolic activities of the 
Proteobacteria and SAR324. This could additionally suggest that these phyla are the primary 
specialists that control this niche. Despite remaining phyla having comparative relative 
abundance levels of nosZ in their metagenomes to the SAR324, their substantially lower 
expression levels may be indicative of tight regulation and lack of signaling to initiate nosZ 
transcription. Similarly, there is no discernible trend between relative abundance levels of 
metagenomic and metatranscriptomic data across the phyla, suggesting that nosZ expression 
is likely not correlated with its metagenomic abundance across depth. Further resolution of 
these dominant phyla at higher taxonomic levels revealed that a single group was contributing 
to the metatranscriptomic peaks produced at 165 m, which were SZUA-229 and SAR234, at 
the order and genus level for Proteobacteria and SAR234 phyla respectively. Lack of 
available literature for both indicates that these groups have only been identified 
metagenomically.  

In the denitrification cycle, nosZ is responsible for the conversion of N2O to N2 (43). 
However, the depths at which N2O concentration and nosZ expression is greatest differs by 
65 m in the water column. One may initially suspect that trends in nosZ expression levels 
would overlap with those of N2O concentration, however this offset could suggest that other 
molecular factors could have a larger influence on nosZ expression. Although N2O is required 
for the activation of nosZ, previous studies have found that the presence of NO strongly 
amplifies nosZ activation signals (44). It is uncertain whether NO may be a requirement for 
the Proteobacteria and SAR324 bacteria that are responsible for the majority of nosZ 
expression found at 165 m. NO concentrations at various depths in the Saanich Inlet were not 
available to make a comparison between the depth at which maximum NO concentrations 
occur and that of nosZ expression. At a depth of 150 m, water conditions become anoxic, 
suggesting that despite a higher concentration of N2O at shallower depths, anoxic conditions 
are required for the transformation of N2O to N2. This is supported by previous work that 
found that SAR324 abundance is correlated, with greater abundance occurring in OMZs (34).  

Evidence of high proteobacterial involvement in multiple denitrification steps at 
both genomic and transcriptomic levels. Our analysis of the relative abundance of the five 
genes of interest at different depths highlight the significant presence of these genes in the 
Proteobacteria phylum. More specifically, at the genome level, Proteobacteria appear to be 
the dominant phylum for napA, norB, and nosZ at all depth levels analyzed (Figure 3A). nirK 
is most abundantly present genomically in both Proteobacteria and Thaumarchaeota, although 
they never appear to dominate at the same depths (Figure 3A). When it comes to gene 
expression, the trends vary slightly. Most interestingly, Thaumarchaeota dominantly 
expresses nirK, with very little to none proteobacterial involvement in expression (Figure 
2B). On the other hand, nosZ expression appears to be mediated by both Proteobacteria and 
the SAR324 clade, with the two co-dominating at 165 meters (Figure 3B). napA and norB 
expression seem to continue to be carried out primarily by proteobacterial species, somewhat 
mimicking the metagenomic data (Figure 3B).  

As can be seen, proteobacteria seem to be heavily involved in most steps of the 
denitrification pathway. They carry all four napA, nirK, norB, and nosZ genes, and 
dominantly express napA, norB, and nosZ at most depths. Although the SAR324 clade co-
dominates in nosZ expression, especially at 165m, it is important to note that this clade is 
often considered a delta-proteobacterial group, and hence a phylogenetically distinct 
proteobacteria lineage (45, 46). Furthermore, although Proteobacteria do not appear involved 
in nirK expression, previous studies of the Saanich Inlet point to dominant proteobacterial 
expression of nirS, a different nitrite reductase gene involved in the denitrification pathway 
(47). In the broader literature, Proteobacteria has often been a phylum associated with 
denitrification, in both aquatic and terrestrial ecosystems (48–50). Alphaproteobacteria 
isolated from OMZs within the Arabian Sea have been found to express nosZ and significantly 
participate in nitrous oxide reduction as a result (50). Other studies into the OMZs of the 
Indian Ocean, including the Arabian Sea, have found high representation of proteobacterial 
clades, such as delta and gammaproteobacteria, in these environments (51). Similarly, our 
own analysis could be underlying the substantial role of proteobacteria in the denitrification 
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pathways present within OMZs, and providing a potential avenue for further exploration of 
microbial community dynamics in the Saanich Inlet. 

The lack of expression of NorB and NosZ at relatively low depths points to the 
potential stratification of the denitrification pathway. Clearly reflected in our data is the 
idea that the abundance of genes in the denitrification pathway varies with depth (Figure 2, 
3). More specifically, from our analysis of the relative abundance of NorB and NosZ, we can 
see that both genes are undetectable at a depth of 10m for the metatranscriptomic (MetaT) 
condition, and NosZ is also undetectable at 10m in the metagenomic (MetaG) condition 
(Figure 2). This finding is also observed in our relative abundance (TPM) graphs, where we 
see a very low relative abundance value for both NorB and NosZ until approximately a depth 
of 125m, after which we observe a sharp increase in the relative abundance of both genes 
(Figure 3B). The observation that NorB and NosZ are expressed in greater concentrations at 
greater depths is further supported by the peak N2O concentration seen at a depth of 100m, 
followed by a gradual decrease in concentration with increasing depth (Figure S1). The peak 
concentration at 100m suggests that NorB is actively catalyzing the production of N2O, and 
the subsequent decrease could be attributed partially to the activity of NosZ, which uses N2O 
as a substrate to produce N2.  

One possible reason for this stratification of the genes in the denitrification pathway is 
the changes in O2 concentrations with depth. O2 was found to decrease in concentration until 
reaching a value of close to 0 μM at approximately 150m, which is also close to the depth at 
which NorB and NosZ relative abundance begins to increase (Figure S1, 3). This suggests 
that very low oxygen concentration is positively correlated with an increase in norB and nosZ 
expression. In their 1989 study, Bonin et al. found that nitrate reductase (like NarI and NapA) 
and nitrite reductase (NirK) are less sensitive toward oxygen than nitrous oxide reductase 
(NosZ) in Pseudomonas nautica (52). They found that nitrate and nitrite reductase activity 
was completely blocked at an oxygen concentration greater than 4.05 and 2.15 mg/L, 
respectively, while nitrous oxide reductase was blocked at only 0.25 mg/L (52). Nitric oxide 
reductase (NorB) was also found to only be active at very low oxygen concentrations (25, 
53). The reduced oxygen sensitivity of nitrate and nitrite reductases would explain why we 
observe a greater relative abundance in NarI, Nap A and NirK at higher depths as compared 
to the more oxygen sensitive NorB and NosZ.  

The increase in denitrification gene diversity at 165m highlights the potential for a 
transition zone between 150 and 165 meters. Previous studies on the microbial community 
dynamics of the Saanich Inlet have denoted strong differences in community compositions 
between surface waters (~10m) and the deep waters below 100m (6). Interestingly, 
geochemical information collected from the Saanich Inlet often point to the 100m point as a 
sort of hypoxic boundary, below which O2 concentrations rapidly decrease (5). Strikingly, 
our metagenomic data with regard to denitrification genes napA, narI, nirK, norB, and nosZ 
shows a noticeable increase in gene diversity at 165 meters (Figure 4). This increase could 
very well be connected to the aforementioned sharp decline in oxygen concentration often 
observed below 100m, leading to a need for alternative electron acceptors such as the 
intermediates involved in the denitrification pathway. However, given that our data does not 
include sampling between the depths of 150m and 165m, we may be missing an important 
transition point in the diversity of genes involved in denitrification. For future studies with 
access to samples collected from depths between 150m and 165m, it would be worthwhile to 
analyze whether this increase in genomic abundance is as sharp as it may seem, or if it is a 
more gradual increase depicting a transition point after 150m. 

 With this said, there is considerable difference between the metagenomic and 
metatranscriptomic data in our depth-based analysis of gene abundance. Although all genes 
experience an increase in abundance at 165m, the same can not be said of expression patterns 
for all genes (Figure 4). Metatranscriptomic abundance peaks at 120m for napA, 10m for 
narI, 165m for nirK, 165m for norB, and 200m for nosZ. It is interesting to point out that, as 
the denitrification pathway advances from left to right, and from nitrate oxide to nitrogen gas, 
it appears that the metatranscriptomic abundance of the genes associated with each step peaks 
at lower and lower depths. napA and narI are both involved in the nitrate oxide reductase 
step, and peak at higher depths, while nirK and norB, involved with the second and third step 
respectively, both peak at a deeper level, 165m. And finally, nosZ, involved with the final 
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step of denitrification, peaks at the deepest level of the Inlet that data was available for, 200m. 
These findings could signify the idea that the intermediate from each previous step of 
denitrification partitions deeper and deeper down the water column as the step is catalyzed, 
leading to the need for the next step of the pathway to be carried out at a deeper level than the 
one before it.  Indeed, such a hypothesis could be rate-limited by diffusion of nutrients from 
one oceanic depth to another. 

Energy yields of metabolic reactions available provide a driving force in 
determining community taxonomic abundances.  In an intuitive sense, the number of 
different taxa that possess a gene should relate to how much energy is provided by said gene. 
The more energy a reaction provides, the higher propensity of a taxa to want to participate in 
that metabolic reaction as well.  Indeed, this assumes that the metabolic products of that 
reaction are non-toxic to the taxa itself, as well as a non-zero concentration of the reactants at 
any point in time. We see this trend being accurately reflected within our model prediction 
for Shannon alpha diversity, with regards to the quadratic and linear terms of standard Gibbs 
free energy of reaction for each denitrification gene; the model predicts a strong negative 
association of H’ associated with an increase of ΔfG in a reaction.  Interestingly however, 
once the ΔfG of a reaction has required a sufficient input of energy, there is a gradual leveling 
in the predicted H’ in taxa containing the gene.   

One potential explanation as to why taxa possessing a non-energy yielding gene product 
continue to do so, is that once a reaction is no longer providing energy, different confounding 
variables on why that reaction needs to take place may have a bigger effect than with higher 
energy producing reactions.  For instance, at least a couple representative taxa in a community 
may be required to execute a metabolic reaction to complete a pathway.  Such has been well 
established in microbial-community spatial dynamics, where a single taxon acts for the 
greater good of continuing the flow of energy in an ecosystem (54, 55).  End products of a 
pathway could potentially be required to drive another metabolic reaction to completion.  In 
our context, metabolic pathways regarding nitrogen do not regularly begin at nitric oxide or 
nitrous oxide as a starting metabolic reactant (56).  NorB and NosZ reactions cap off the 
denitrification pathway to completion, to yield biologically inert nitrogen gas (Table 1).  
Following, nitrogen gas is utilized in nitrogen fixation in anoxic environments to create 
ammonia. Lastly, ammonia is used in the nitrification pathway to create nitrite and nitrate.  
As previously explained, these are the initial reactants in the denitrification pathway, and 
yield high degrees of energy when acting as terminal electron acceptors (TEA) relative to 
compounds further down in the denitrification pathway.  

Differential abundance between metatranscriptomic and metagenomic alpha 
diversity represents the dynamic nutritional conditions within the Saanich inlet.  Our 
model signifies that there is a direct decrease in Shannon diversity when considering 
metatranscriptomic data in relation to metagenomic data.  Indeed, this makes sense--a taxa is 
required to contain a gene to be able to transcribe it, indicating that the Shannon diversity in 
the metatranscriptomic data must be lesser than or equal to the value in the corresponding 
metagenomic data for a gene.  However, it is notable how large the scale of decreases is in 
Shannon diversity between the two ‘omic groups.   

One explanation for this effect size is that gene products in the denitrification pathway 
are not constitutively expressed at all times, and some taxa may require distinct environmental 
signals to begin transcribing these respective genes (57).  For instance, nitrate and nitric oxide 
are also signaling molecules to induct N oxide metabolizing enzymes (57). This notion is 
especially important in the context of the Saanich Inlet due to the seasonality of the 
geographical location.  During the spring and summer months, there are high levels of primary 
productivity and limited vertical mixing below the glacial sill. In these conditions, there are 
clear minimal oxygen levels at deeper depths. However, neap tidal flows in the summer and 
fall are important for bringing in denser water, resulting in vertical mixing and creating oxic 
conditions at the deeper depths (5). As a result, microbial communities at all depths will never 
reach a long-term steady state equilibrium in nutrients within the Saanich inlet. This 
seasonality therefore has a potential to drive the creation of microbial redundancies in their 
genomes to be able to survive in various different nutritional conditions. This counteracts the 
microbial propensity to reduce their genome size for increasing growth rate.  Such 
redundancies are particularly important within OMZs, and could represent similar microbial 
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trends in other global seasonality-driven OMZs.  This signifies the importance of 
investigating both metatranscriptomic and metagenomic data in further oceanic gene-centric 
analysis. 

 
Limitations There is a somewhat low statistical power in our analysis due to low sample size, 
as it focuses on data from a single cruise (SI072) representing one temporal level. As a result, 
our findings are a very small glimpse into the geochemical conditions and microbial 
community dynamics of the Saanich Inlet.  Utilizing multiple time points would have allowed 
us to assess temporal correlations between nutrients, taxa, and diversity.   Furthermore, the 
TreeSAPP pipeline has an inherent reliance on reference sequences of previously classified 
taxonomic groups. Hence, the reference packages constructed for each gene of interest may 
have a potential bias towards more well-studied microbial groups, such as the proteobacteria 
phylum. This bias could lead to a lack of identification of other denitrifying microorganisms 
present in the dataset-especially those less well-documented. 

It is also important to mention that the norB reference package failed to update with SAGs 
and MAGs, which could be contributing to the larger number of unclassified phyla, labeled 
NA, present specifically in the metatranscriptomic relative abundance plot (Figure 3B). 
Additionally, purity analysis of NorB ran into an error, even with the non-updated reference 
package, indicating issues with the program or baseline reference package. Due to time 
limitations, we were unable to develop a new reference package to fix this issue.  All other 
reference packages were successfully updated, and hence the issue most likely does not lie 
with the code, and rather with the norB reference sequences specifically. 

Our model itself also suffers from various limitations.  Firstly, our data was calculated 
using standard Gibbs free energy of reaction values, kept constant at every single depth and 
gene.  However, this is evidently a large source of residual error, because pressure, and 
temperature vary extremely widely across different depths in the Saanich water column.  
Additionally, Shannon diversity does not utilize information on evolutionary distance 
between species.  Unfortunately, with the way the analysis is structured, using denitrification 
genes as functional gene anchors within treesapp did not allow us to use evolutionary 
distances through an output tree network file. Additionally, work with quadratic terms 
prevents extrapolation in trends outside the range of our points.  Lastly, prediction of Shannon 
diversity in the context of ΔfG˚ should be done with every new metabolic pathway to ensure 
trends do not change.  
 
Future Directions Future studies can attempt to carry out similar analysis with a much larger 
sample size, ideally from multiple cruises from the Saanich Inlet. An increase in sample size 
will allow for a study population more representative of the microbial community within the 
Saanich Inlet. In addition, the global generalizations of the results can be examined by 
replicating the study against other OMZs to correlate. One such OMZ is the Gotland Basin in 
between Sweden and the Baltic countries, which additionally has a depth similar to the 
Saanich Inlet with 249 meters (58). Moreover, assessing other similar genes in each step of 
the pathway can help further examine microbial organisms' involvement at different depths. 
Such as narG, narH, narJ, and napB for the nitrate reductase step, nirS for the nitrite reductase 
step, and norV and norW for the nitrous oxide reductase step (9). This information would 
provide more accurate data on the pathway as a whole at the differing depths while also 
identifying phylums with different genetic preference for each step. 

Additionally, it would be very interesting to see whether the same trend between reaction 
energy and H’ occurs in other metabolic pathways as well.  In environments where TEAs 
yield much more energy (such as using oxygen gas), we would expect taxa that contain that 
pathway’s genes to lack the high degree of evolutionary pressure for large changes, and 
therefore have a much less pronounced slope.  Lastly, analysis should be done with Gibbs 
free energy taking into account temperature and pressure.  
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