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SUMMARY  Microbes are ubiquitous organisms that have been familiarly associated with 
human health and welfare, and human-bacteria interactions can shape the microbial makeup 
of the broader environment. While there has been extensive research conducted on the human 
microbiome, few studies have explored human microbiome dynamics as a function of open 
human social practices, and even fewer studies have explored how confinement parameters 
as extreme as space exploration simulation can impact the microbiome. Therefore, we aimed 
to compare two separate datasets modeling an open and confined environment, to investigate 
whether microbiome diversity differed between the two environments. Our study found that 
open environments have greater phylogenetic diversity and taxonomic richness at the genus 
level compared to confined environments, whereas confined environments have greater 
evenness indices compared to open environments. As a result, we also discovered that the top 
20 differentially abundant genera between the datasets were all lower in abundance within 
our model for confined environments. These findings demonstrate that open and confined 
environments differ in microbiome diversity. 
 
INTRODUCTION 

icrobes have long been implicated in human health and well-being (1). Microbes are 
ubiquitous, having been found on animals, plants, building surfaces, and even the air 

(2). Moreover, bacterial colonization of humans can serve as a vector that shapes the 
microbial makeup of the spaces and other individuals they might encounter (3, 4). Thus, 
despite the ubiquity of microbes, the specific bacterial taxa that predominate a given space 
will exhibit differential biogeographical patterns. This is in part due to the fact that differences 
in bacterial communities are directly affected by contact with outdoor environmental factors 
(5).  

Although the effects of open social interaction on microbial composition in various 
primates have been reported (6–9), few studies directly explore human microbiome dynamics 
as a function of migratory behaviors and human social practices (10). Even fewer studies have 
explored confinement parameters as stringent as in the case of space exploration simulation 
(11–13). As a result, direct comparisons between human microbial signatures of these 
confined (where individuals do not have any contact with the outside environment) and open 
(where individuals share regular contact with the outside environment) environments have 
not been explored. Our project thus aims to fill this gap by comparing the microbial 
communities of open and confined environments, modeled by a dorm dataset and a space 
stimulation (Hawai’i Space Exploration Analog and Stimulation; HI-SEAS) dataset, 
respectively.  

Our open environment data is sourced from microbial communities on the surfaces of 
open shared dorm rooms and their inhabitants from a University of Chicago residence hall. 
Previous research on this data has investigated how individual microbial signatures impacted 
the microbiota of common spaces in a college dormitory (14). In this study, common hand-
associated surfaces were found to be a central point of association, while individual shoe 
samples were more connected to each other than floors, indicating that hands were a primary 
means of transmission in comparison to shoes between common spaces (14).  Our confined 
environment data is sourced from the HI-SEAS study(15), wherein the microbiota of the 
environmental surfaces and individuals in a shared dome were sampled. In this study, six 
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individuals spent one year in isolation inside an 11-meter spherical dome in Hawaii to mimic 
the effects of space travel (15). The original dataset study utilized the HI-SEAS dataset to 
delineate the longitudinal dynamics of the human microbiomes under confined environments 
(15). This study observed significant differences in microbial diversity, abundance, and 
composition between abiotic and biotic surfaces sampled (15). Furthermore, this study 
provided evidence supporting the hypothesis that abiotic and biotic surfaces undergo 
longitudinal microbial homogenization over time (15). 

By utilizing these two datasets as models for open and confined environments, we can 
novelly investigate the differences between the bacterial communities present, to ultimately 
better understand the microbial conditions that those with no outside contact endure. As such, 
the aims of this study were to: 1. determine whether the microbiome of abiotic and biotic 
surfaces within open environments are more or less diverse than abiotic and biotic surfaces 
within confined environments; 2. investigate the difference between taxonomic richness in 
the microbiomes of open and confined environments; and 3. investigate the difference in 
organism abundance between the microbiomes of open and confined environments in abiotic 
and biotic surfaces. To explore these experimental aims, we used alpha diversity analyses to 
compare microbiome diversity between open and confined environments in both abiotic and 
biotic surfaces, taxonomic analysis to determine unique and overlapping taxonomic groups 
between open and confined environments, and differential abundance testing to identify 
dominant bacteria in confined and open environments within abiotic and biotic surfaces. 
Quantitative Insights Into Microbial Ecology 2, (QIIME2) (25), a bioinformatics platform for 
the processing and analysis of amplicon library data, was used to conduct our alpha and beta 
diversity analyses and taxonomic analysis while R (22), a statistical computing and graphics 
programming language, was used for our differential abundance testing. 

We hypothesized that both abiotic and biotic surfaces will be significantly different 
between confined and open environments as previous research has demonstrated that 
individuals sharing closed social networks harbor more similar profiles of microbiome 
diversity at strain-level resolution (16). We further hypothesized that both abiotic and biotic 
surfaces within confined environments will harbor less diverse microbiomes when compared 
to open environments, as it is well established that increasing social interaction contributes 
significantly to microbiome diversity in isogenic mouse and chimpanzee models (17, 18).  
After performing our analyses, we found that open environments exhibited greater 
phylogenetic diversity and taxonomic richness, while confined environments had greater 
evenness. We also found that our open environment had a higher abundance of the top 20 
differentially abundant genera.  
 
METHODS AND MATERIALS 
Datasets. The HI-SEAS (model for confined environment)  dataset was generated by Mahnert 
et al., wherein 6 participants were enclosed in an 11-meter diameter dome for 1 year in Hawaii 
as a part of a study conducted by NASA and the University of Hawaii. Various surfaces in 
the dome including the toilet, kitchen floor, bedroom desk, and main desk, in addition to the 
torso of each crew member, were swabbed biweekly for the duration of the mission (15). The 
dorms (model for open environment) dataset was generated by Richardson et al., who 
sampled 37 participants, in addition to their dormitory rooms (shared or single) and common 
areas, at four time points over the course of 3 months (14). Individual surfaces including 
hands, bed sheets, and shoes were swabbed from each participant, in addition to common 
surfaces including tables and bathrooms (14). For the HI-SEAS dataset, DNA extraction was 
performed using QIAGEN’s DNeasy PowerSoil Kit(19). For the dorm's dataset, DNA 
extraction was performed using MO BIO’s PowerSoil DNA Isolation Kit(20). Microbial 
sequences from both datasets were obtained using primer pairs F515-R806 specific for the 
V4 region of the 16S rRNA gene, hybridized to tags for Illumina Miseq sequencing(21).  
 
Metadata manipulation. All data manipulation and analysis performed using R(22) are 
detailed in the supplemental R script (RScript). The dorms and HI-SEAS metadata were 
joined in R (version 4.1.2)(22) and RStudio(23) along with R packages: tidyverse (version 
1.3.1) (24). A new metadata category “dataset” (with binary fields “dorms” or “HI-SEAS”) 
was created to define the original dataset of a given sample after joining.  
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Data processing using the QIIME2 pipeline. All data analyses performed using QIIME2 
(25)are detailed in the supplemental QIIME2 script (QIIME2Script). The modified metadata 
table and both the demultiplexed dorms and HI-SEAS data files were imported into QIIME2 
(version 2022.2) (25). A read length of 150 base pairs was retained, given that all truncation 
lengths less than or equal to 150 have 25th percentile Phred quality scores over 30. A read 
length of 151 (maximum retained bases) has a 25th percentile Phred quality score of 16 
indicating a  significantly wider margin of sequencing error. Sequence quality control was 
performed by the QIIME2 compatible plugin Divisive Amplicon Denoising Algorithm 2 (q2-
DADA2) (26), which corrects for potential sequencing errors and classifies unique amplicon 
sequence variants (ASVs) by clustering. After DADA2 denoising, dorms and HI-SEAS 
features tables and representative sequences files were merged in QIIME2.  
 
Taxonomic classification. A pre-trained Naive Bayes classifier (27) (trained using scikit-
learn 0.24.1 on the 99% Silva 138 reference database (28, 29) and 515F/908R primers) was 
used to assign the representative sequences taxonomic identities and confidence level in 
QIIME2. The taxonomic composition (classified representative sequences) was then 
visualized by the taxa barplot function in QIIME2.  
 
Features table filtering. Eukaryotic ASVs (mitochondria and chloroplast DNA) were 
filtered out from the features table in QIIME2. The resulting features table was further filtered 
based on sample metadata for abiotic (defined as sample_type = ‘surface’) and biotic (defined 
as sample_type = ‘skin’) surfaces generating two unique features tables (abiotic and biotic) 
for downstream diversity and abundance analysis. We chose to retain a sampling depth of 
7000 bp, which maximizes the number of samples and ASVs/features retained. The QIIME2-
generated Alpha Rarefaction curves supported this sampling depth. 
 
Alpha and beta diversity analysis. To facilitate downstream phylogenetic diversity analysis, 
a rooted phylogenetic tree was generated to relate features based on phylogenetic distance. 
The tree was made by the QIIME2 pipeline using Multiple Alignment using Fast Fourier 
Transform (MAFFT)(30, 31) to perform multiple sequence alignment of features, and the 
FastTree q2-phylogeny plugin (32)to generate a corresponding unrooted phylogenetic tree. 
Using the q2-diversity plugin, alpha diversity metrics (Shannon’s diversity index (33), 
Observed Features, Faith’s Phylogenetic Diversity (34), Pielou’s evenness (35)) and beta 
diversity metrics (Jaccard distance (36), Bray-Curtis distance (37), unweighted UniFrac 
distance (38), weighted UniFrac distance (39)), were computed at the aforementioned 
sampling depth of 7000. Statistical significance for alpha diversity metrics was computed 
using Kruskal-Wallis one-way analysis of variance test (40). Statistical significance for beta 
diversity metrics was computed using the permutational multivariate analysis of variance 
(PERMANOVA) test (41). Visualizations for alpha diversity analysis boxplots and beta 
diversity principal coordinates analysis (PCoA) plots using Emperor (42, 43) were generated 
as an output of the QIIME2 q2-diversity plugin. QIIME2 generated outputs (features table, 
rooted tree, taxonomy, sample metadata) were imported into R. To facilitate downstream 
abundance analysis, the outputs were integrated into a phyloseq object using package Qiime2r 
(44) (converted into DESeq2 (Differential Expression Analysis For Sequence Count Data 2) 
object using package DESeq2) (45) and a microeco object using package File2meco (46). 
 
Taxonomic abundance analysis. To identify unique taxonomic groups at the genus level, 
the level-6.csv taxonomic composition spreadsheet was extracted from the taxa bar plot 
export and converted to .xlsx format. From this spreadsheet, the number of unique taxonomic 
groups for the open dataset and confined dataset, as well as shared taxonomic groups between 
the datasets were calculated on Microsoft Excel (47). A venn diagram was made on Adobe 
Illustrator (48) to visualize the number of unique and shared taxonomic groups between 
datasets.  
 
Differential abundance analysis. Differential abundance analysis was performed in R using 
the packages DESeq2 (45), Phyloseq (49), Tidyverse, Vegan (50) and Ape (51) detailed in 
the supplemental R Script (RScript). The confined dataset was defined as the reference group. 
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Significance was defined as differentially abundant genera with an adjusted FDR-corrected 
Wald Chi-Squared Test (52) p-value of <0.05. Top 20 hits for significant differentially 
abundant genera were plotted using ggplot2 (53).  
 
Relative abundance analysis. Relative abundance analysis was performed in R using 
packages randomForest (54), Tidyverse (24), Microeco (46), Cowplot (55) and File2meco 
(46) detailed in the supplemental R Script (RScript). The microeco trans_diff function utilized 
the supervised machine learning algorithm randomForest analysis (54) to identify 
differentially abundant taxa. The sample group for comparison was the metadata category 
“dataset, and the significance cutoff was defined as average abundance <0.01%.  
 
Figure formatting. All figures generated by QIIME2, Emperor, DESeq2-phyloseq pipeline 
and randomForest-microeco pipeline were reformatted and annotated using Adobe Illustrator. 
 
Data availability. The HI-SEAS confined dataset is publicly available at QIITA under study 
ID 12858, and the European Nucleotide Archive (ENA) under accession number ERP118380. 
The dorms dataset is publicly available at QIITA under study ID 12470 and the European 
Bioinformatics Institute (EBI) under project number PRJEB33050/ERP115809. 

 
RESULTS 
Confined environments exhibit greater evenness while open environments exhibit 
greater phylogenetic diversity. To assess the microbiome diversity of abiotic and biotic 
surfaces in both open and confined environments, we performed alpha diversity analyses on 
the open and confined datasets using Pielou’s evenness and Faith’s phylogenetic diversity 
metrics in the QIIME2 pipeline. This analysis showed that Pielou’s evenness was 
significantly higher in the confined dataset compared to the open dataset, while Faith’s 
phylogenetic diversity was significantly higher in the open dataset compared to the confined 
dataset (Figure 1). These results are consistent across both abiotic (Figure 1A) and biotic 
(Figure 1B) surfaces. 

FIG. 1 Confined environments exhibit greater evenness while open environments exhibit greater phylogenetic 
diversity. Alpha diversity analyses of (A) abiotic or (B) biotic surfaces from the confined (red) and open (blue) datasets, 
box plots and error bars represent mean ± SEM. Statistical analysis was performed via Kruskal-Wallis one-way analysis of 
variance test. Q-values are denoted on the respective plots. 
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Additionally, to investigate the diversity between the two environments, we performed 
beta diversity analyses using the unweighted UniFrac metric in QIIME2. Here, we observed 
a similar trend to the alpha diversity analysis, wherein the two groups differed significantly 
in both abiotic (Supplemental Figure 1A, 1C) and biotic (Supplemental Figure 1B, 1D) 
surfaces.  
 
Open environments exhibit greater taxonomic richness compared to confined 
environments. As we observed significant differences in microbiome diversity between the 
two datasets, we decided to investigate the taxonomic makeup of the confined and open 
datasets. Here, we found that across all surfaces, the confined dataset harboured only 146 
unique genera, while the open dataset harboured 1160 unique genera (Figure 2). 
Additionally, the two environments shared 1050 genera. 

 
The top 20 bacterial genera are more differentially abundant in open compared to 
confined environments. Upon exploring the taxonomic makeup of the confined and open 
datasets, we decided to take a closer look at the organism abundance and individual 
microorganisms using a differential abundance analysis with the DESeq2/Phyloseq pipeline. 
Here, we observed that the top 20 differentially abundant genera were more abundant in the 
open dataset compared to the confined dataset (Figure 3). Upon analyzing abiotic surfaces, 
Nesterenkonia sp. was over 20 times more abundant in the open compared to confined 
environments (Figure 3A). Similarly, on biotic surfaces, Salinococcus sp. and Actinobacillus 
sp. were more abundant in the open compared to confined dataset (Figure 3B). In total, there 
were 426 and 221 differentially abundant genera between open and confined environments 
for abiotic and biotic surfaces, respectively. 
 

Additionally, we looked at the relative abundance of specific genera using the 
RandomForest/Microeco (49, 42) pipeline (Supplemental Figure 2). Here, we found that 
both the confined and open dataset displayed genera more relatively abundant in one dataset 
in comparison to the other, though dominantly abundant genera were present. The confined 
dataset was more abundant in Pseudomonas sp. for abiotic surfaces (Supplemental Figure 
2A) and Cutibacterium sp. for biotic surfaces (Supplemental Figure 2B) relative to the open 
dataset. The open dataset was more abundant in Streptococcus sp. across both abiotic and 
biotic surfaces relative to the confined dataset. In total, there were 821 relatively abundant 
genera on abiotic surfaces, and 321 relatively abundant genera on biotic surfaces. 

 
DISCUSSION 
Few studies have compared different environments modeled by different datasets. In this 
study, we explored the human microbiome communities of an open and confined shared 
environment to determine whether or not microbiome diversity differed between the two. The 
need to address this knowledge gap is especially important to consider due to the increase in 
confined living conditions as a result of global lockdowns and quarantine guidelines during 
the COVID-19 pandemic. Using alpha and beta diversity analyses, taxonomic analysis, and 

FIG. 2 Open environments exhibit greater taxonomic 
richness compared to confined environments. Taxonomic 
analysis of confined (red) and open (blue) datasets for both 
abiotic and biotic surfaces. The confined dataset had 146 unique 
microbial genera, while the open dataset had 1160 unique 
genera. Additionally, the two datasets shared 1050 genera. 
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differential abundance testing, we found significant differences in microbiome diversity 
between open and confined shared environments.  
 
Different metrics underlying diversity demonstrate that microbiome diversity differs 
between open and confined environments but is complex. We investigated whether the 
microbiome of abiotic and biotic surfaces within open environments are more or less diverse 
than abiotic and biotic surfaces within confined environments. Using alpha diversity analyses, 
we found that the confined environment exhibited significantly greater community evenness 
in comparison to the open environment for both abiotic and biotic surfaces, indicating that 
the confined environment had higher diversity in regards to this metric (Figure 1). This 
suggests that the lack of exogenous factors in a highly confined environment results in 
increased microbial uniformity. It is well known that the microbial community is highly 
dynamic, and it is possible that under confined conditions where there is a lack of external 
microbial input, the existing microbes adapt over time in the environment and interact with 
each other to form a homogenized community structure. It is also possible that the presence 
of exogenous factors favor certain microbial species over others, leading to decreased 
evenness in open environments.  

On the other hand, our alpha diversity analyses showed that the open environment 
exhibited significantly greater phylogenetic diversity compared to the confined environment 
for both abiotic and biotic surfaces, demonstrating higher community richness and thus 
increased microbiome diversity when considering this metric (Figure 1). This was also 
supported by the taxonomic analysis, which showed higher taxonomic richness in the open 
environment when compared to the confined environment for both surface types (Figure 2). 
These data together suggest that exogenous factors can shape the microbiome of both abiotic 
and biotic surfaces, leading to increases in the absolute number of organisms in a given 
environment as well as the relatedness distance between organisms. It is likely that external 
environment and social interactions provide the opportunity for the introduction of new and 
more diverse microbes into a given space. Increased richness can favor community-level 
stability by ensuring the presence of various species that can tolerate different environmental 
fluctuations (56). That being said, pathogenic strains may also be introduced, and new 
interspecies interactions within the microbiome can also contribute to the complexity of the 
community. Our findings of increased diversity in open environments are consistent with the 

FIG. 3 Nesterenkonia sp., Salinococcus sp., and Actinobacillus sp. are differentially abundant in open environments 
compared to closed environments. Differentially abundant genera in the open dataset compared to the confined dataset 
was acquired through differential abundance analysis using the DESeq2/Phyloseq pipeline. The confined dataset was 
defined as the reference group. Top 20 genera were determined according to statistical significance via FDR-corrected 
Wald Chi-Squared Test. Both (A) abiotic and (B) biotic surfaces were analyzed with a >20 log2 fold change for 
Nesterenkonia sp. (abiotic), Salinococcus sp., and Actinobacillus sp. (biotic). 
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existing literature, which demonstrates that individuals with larger social networks harbour 
more diverse microbiomes (10), and that microbial diversity declines over time in highly 
confined living situations (11). Animal studies have shown that social behavior can induce 
changes in the microbiome by influencing transmission and behavior patterns, but further 
investigation is needed to confirm these findings in the case of humans (57). Moreover, future 
studies are encouraged to explore whether it is the lack or presence of exogenous factors that 
drives factors measuring microbiome diversity.  

Our results support our hypothesis which states that microbiome diversity within both 
abiotic and biotic surfaces differs significantly between confined and open environments. 
However, given the conflicting results from our diversity metrics, we were unable to deduce 
if microbiome diversity was comprehensively higher in either environment as measurements 
of diversity are more complex and dependent on the metric used. Therefore, our results 
partially supported our secondary hypothesis proposing reduced diversity in confined 
environments. This secondary hypothesis was supported by the phylogenetic diversity and 
taxonomic richness metrics, but refuted by the evenness metric. Hence, our study highlights 
the importance of considering various factors indicative of diversity, as different metrics may 
measure diversity contrastingly.  
 
Dominant genera with possible human health implications were present amongst the 
differentially and relatively abundant genera. Next, we sought to investigate the difference 
in organism abundance between the microbiome of open and confined environments on 
abiotic and biotic surfaces. Changes in microbiome diversity and composition can affect the 
services provided to the host by the microbiome and impact host fitness (57). Thus, we aimed 
to identify dominant genera with possible implications for human health. Using a differential 
abundance analysis, we found a higher abundance of the top 20 differentially abundant genera 
in the open environment compared to the confined environment, suggesting that exogenous 
factors can lead to increases in microbial abundance (Figure 3). Specifically, the genus 
Nesterenkonia was found the most dominantly differentially abundant on abiotic surfaces 
(Figure 3A), while the genera Salinococcus and Actinobacillus were found to be the most 
dominantly differentially abundant on biotic surfaces (Figure 3B). Bacterial members of the 
genus Nesterenkonia are predominantly found in hypersaline habitats, and have been mainly 
reported as weak human pathogens that can cause asymptomatic bacteraemia (58, 59). That 
being said, certain species such as Nesterenkonia jeotgali and N. massiliensis have been 
proposed to be potentially clinically pathogenic (58, 59). Salinococcus sp. are also moderately 
halophilic but are poorly characterized, though no species have yet been reported as 
pathogenic (60). Lastly, the majority of Actinobacillus sp. are found on the alimentary, 
respiratory, and genital mucous membrane of various animals and humans, and act as 
commensals (61, 62). However, certain species have been discovered as pathogenic, and 
studies have also reported findings of commensal species in lesions (62). For instance, A. 
actinomycetemcomitans has been found to play a role in periodontal disease and endocarditis 
in humans (62). The variation in pathogenicity between the various species within a genus 
highlights the importance for further studies to explore these dominant genera at the species 
level, in order to elucidate their role in human health and well-being. 

Using a relative abundance analysis, we were able to identify additional dominant genera 
more abundant in open or confined environments (Supplemental Figure 2). The genus 
Streptococcus was found more abundant in open environments relative to confined 
environments (Supplemental Figure 2), which was consistent with our findings from the top 
20 differentially abundant genera (Figure 3). Many species of the Streptococcus genus are 
highly pathogenic, with as many as 35 species identified as causes of invasive infections in 
humans (63). The highest number of pneumonia cases worldwide have been caused by S. 
pneumoniae, and members of the human and animal flora have also been discovered to have 
pathogenic potential (63). Studies have also shown that streptococcal diseases are more 
common in developing countries, which may be associated with an increase in open 
environments in developing countries compared to developed countries (64). Interestingly, 
relative abundance analysis also displayed dominant genera that were more abundant in the 
confined environment relative to the open environment, with Pseudomonas sp. more 
abundant on abiotic surfaces and Cutibacterium sp. more abundant on biotic surfaces 
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(Supplemental figure 2). Most of the Pseudomonas sp. with implications on human health 
have been found to be associated with opportunistic infections (65), whereas Cutibacterium 
sp. are typically commensals of the skin, though some have also been discovered to have 
pathogenic potential and can be considered opportunistic (66). Given these findings, 
microbiome dynamics need to be monitored to prevent the spread of potential pathogens and 
to maintain a healthy, diverse microbiome.  

Furthermore, from our differential and relative abundance analyses, we noted an increase 
in diversity on abiotic surfaces compared to biotic surfaces as we found 426 differentially 
abundant genera on abiotic surfaces and 221 on biotic surfaces. The relative abundance 
analysis produced the same trends, displaying 821 relatively abundant genera on abiotic 
surfaces and 321 on biotic surfaces. We propose that this can be attributed to the use of 
antibiotics by humans and an increase in antimicrobial compound production on biotic 
compared to abiotic surfaces. 
 
Limitations A main limitation of this study was the use of two different datasets to conduct 
our analysis. As a result, the data was obtained from two different laboratories, and thus had 
inconsistent study procedures. This led to variability in factors including sample collection 
methods, sample collection time, and sample size. In regards to sample collection, biotic 
samples from the open dataset were obtained by swabbing a sterile cotton BD-Swube 
applicator (14), while biotic samples from the confined dataset were obtained via sterilized 
wipes and deionized water (15). Furthermore, the collection time of the sample varied 
between the groups. In the dorms study, samples were collected at 4 points during a 3-month 
period (14), while in the confined study, samples were collected biweekly for 11 months (15). 
Finally, the sample sizes between the open data (abiotic: 258, biotic: 114) (14), and confined 
data (abiotic: 104, biotic: 59) (15) used for this study differed slightly. However, QIIME2 
normalizes sample size upon initial data processing, thus mitigating the issue of differential 
sample size for our study and likely did not greatly impact our results.  

Another limitation of this project was the lack of species-specific data when evaluating 
taxonomic trends between confined and open environments. When looking at distinct species 
in the taxonomic and differential abundance analysis, many samples were lost as species-
level taxonomic information was not available. As such, we decided to analyze our data at 
the genus level to retain a high level of organisms. Thus, distinct species were not able to be 
identified, diminishing the specificity of our results. 
 
Conclusions Our study aimed to compare the microbiome diversity of abiotic and biotic 
surfaces in an open and confined shared environment. We found that microbiome diversity 
differed between open and confined environments. While the open environment exhibited 
significantly greater phylogenetic diversity and taxonomic richness, the confined 
environment had significantly greater evenness. We speculate that these results suggest that 
the presence or lack of exogenous factors impacts microbiome diversity, though further 
investigation is needed to confirm this and identify the specific factors. Furthermore, we 
observed a higher abundance of the top 20 differentially abundant genera in the open 
environment compared to the confined environment, and identified Nesterenkonia sp., 
Salinococcus sp., and Actinobacillus sp. as the most dominant genera. While potential 
pathogens were identified, further studies need to be conducted to explore the role of these 
dominant genera in open environments and their implications on human health.  
 
Future Directions To address certain previous limitations mentioned, this experiment could 
be replicated with the same protocol for both confined and open living conditions. By utilizing 
a streamlined protocol, additional variations in sample collection methods, collection time, 
and sample size can be eliminated and the results obtained can harbour more significance. 
Furthermore, as discussed in the limitations section, future studies could investigate the 
individual species that arise from the dominant genera we have identified. Our current study 
was constrained by a lack of species-specific data, and as aforementioned, some species of 
the dominant genera are pathogenic whereas others are not. Thus, it would be pertinent to 
identify which species are more dominant in confined and open environments to determine 
clinical relevance. 
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Another future direction could be to evaluate which factors led to the observed differences 
in microbiome diversity between the two environments. While one environment was open 
and the other was confined, there are still various exogenous factors including outdoor 
exposure, movement patterns, and the number of social contacts, which may predominantly 
contribute to these differences in microbial diversity. Exposure to nature (67), increased social 
interaction (68), and higher levels of movement (69) are all characteristics of an open 
environment in comparison to a closed environment; these components have similarly been 
implicated in shaping the human microbiome, and thus are important to consider when 
investigating the differences between these environments. Altogether, the determination of 
the key factor(s) in differences between the microbial makeup of an open and confined 
environment can provide further rationale for our observed results. By studying these factors, 
we may be able to elucidate whether or not it is the presence or the lack of these factors that 
impact microbiome diversity, as well as the directionality of the connections between 
exogenous factors and the microbiome. For instance, in this study, we show that exogenous 
factors can affect the diversity of the microbiome, but other studies have also shown that the 
microbiome can influence host social behavior through the production of chemical signals 
and changes to the nervous system (57). 

Lastly, an additional future direction is to explore other facets of the human microbiome 
in response to confined versus open environments. A currently understudied constituent of 
the microbiome is the virome, which mainly includes viruses that infect bacteria and plants, 
although also contains eukaryotic viruses (70). The composition of the human virome is 
similarly shaped by external factors including cohabitation and living environments (71), and 
thus may exhibit comparable trends to the bacterial constituent of the microbiome. 
Consequently, the virome can have major effects on both bacteria and humans and can be 
important to study in parallel with the bacterial microbiome. 
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