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SUMMARY  Individuals carry a unique collection of microbes on their skin, known as their 
microbiome, which may impact the microbial makeup of their surrounding environment. The 
skin microbiome is also influenced by individuals cohabitating the same space. Using data 
collected by Richardson et al., this study aims to understand the influence of roommates on 
one’s skin microbiome and on the microbiota of their abiotic living environment. This will 
provide insight into how the human microbiota is influenced, and the role that those around 
us have in shaping the microbiome. Given the changes to the skin microbiome of cohabiting 
families and the microbial imprint humans tend to leave on the built environment in which 
they live, we hypothesized that having roommates would affect the microbial diversity of 
both environments. To address this hypothesis, we generated diversity metrics using QIIME2, 
which revealed significant differences between single- and multiple-occupancy dorm types. 
Subsequently, separate analyses of differential abundance and indicator taxa were conducted 
on the abiotic and biotic samples, which revealed significant differences in the abiotic samples 
between single and multiple occupancy dorms. This study revealed that not only are 
differentially abundant species occupying the abiotic environment of those with roommates, 
but that particular taxa may be used as indicators of individuals who live with or without 
roommates. It gives new insights into the effects of cohabitation with unrelated individuals 
and inspires further research into the biological causes behind the observed differences. 
 
INTRODUCTION 

t is well known that distinct microbial species inhabit individuals, imparting a unique 
environment of microbes that collectively make up one's microbiota (1, 2). In particular, 

the skin microbiome serves as an exterior interface between one's body and their environment, 
protecting from invading pathogens, priming the immune system, and breaking down natural 
products (3). These organisms maintain a unique signature, which is stable over time, and is 
likely a result of both one's experiences and environment (2). Research in this area suggests 
that microbes from one's skin are continually shed into the surrounding environment (1). This 
understanding led to subsequent investigation of the similarity between individuals who share 
living spaces. Previous research revealed that cohabiting individuals significantly influence 
the composition of each other's skin microbiome, making them more similar to one another 
when compared to other, non-cohabiting individuals (1). Additionally, it has been found that 
the human skin microbiome is the greatest contributor to the microbiota of the built 
environment, which encompasses all structures built by humans including our homes and 
workspaces (4).  

The skin microbiome imprints on the abiotic surfaces within living spaces. Microbial 
communities associated with family members were shown to readily inhabit the abiotic 
surfaces of the family’s home and converge on the microbial community of their previous 
home, even after they had moved houses (5). Other research has shown that families, and 
especially couples, had a greater level of microbial similarity in their microbiota than 
individuals from different households, highlighting microbial exchange within shared living 
environments (6). Despite this exchange within shared environments, the skin microbiome of 
individuals has shown to be relatively stable over time, comprising an individualist microbial 
signature (7). Previous research has posited that humans can disperse microbes which they 
harbor through direct contact with surfaces or through airborne release. The latter method 
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may even allow individuals to be identified through a distinct combination of microbes 
present in a “microbial cloud” (8).  

This individuality of one's microbiome combined with its ability to imprint on the 
environment and be influenced by cohabitation with other individuals was investigated by 
Richardson et al. Previous research has shown that the microbiota of the built environment is 
influenced by human sources and that living with family members or couples modifies one's 
microbiome. However, changes in the microbiome have not been studied in large groups of 
unrelated cohabiting individuals, such as students in a college dormitory. In their study, 
Richardson et al. addressed this gap by collecting environmental and biological samples over 
various time points from students in one dormitory building with both private spaces and 
shared common areas (9). Their goal in collecting this data was to assign microbial 
“signatures” to each individual, from which they could predict the rooms they inhabit based 
on shared microbial composition (9). The study confirmed previous research suggesting that 
one's microbial signature is stable over time and demonstrated the mixing of these signatures 
in spaces occupied by multiple individuals (5–7, 9). In addition, their model was able to 
attribute individuals to their bedroom based on shared characteristics between their skin and 
their room’s microbiome. However, they observed that the presence of a roommate was a 
significant confounding factor in their model’s ability to successfully predict which room an 
individual belonged to (9). Thus, we wanted to investigate specifically how the presence of a 
roommate affected the microbiome.  

We sought to understand how having a roommate might influence the diversity and 
composition of both the skin microbiome and abiotic environment of students living in a 
common dormitory. Previous studies suggest that cohabitation facilitates the exchange of 
one’s microbiome with their roommates and their surrounding environment. Therefore, we 
hypothesized that having roommates would affect the microbial diversity of both the skin 
microbiome and abiotic environment. Using Richardson et al.’s data, we analyzed diversity 
metrics for both the biotic and abiotic samples from single and multiple occupancy rooms 
using Quantitative Insights Into Microbial Ecology (QIIME2) (10). We then used differential 
abundance and indicator taxa analysis in QIIME2 to provide further insights into the abiotic 
environment, which showed significant differences between single and multiple occupancy 
environments. 
 
METHODS AND MATERIALS 
The dataset. The data in this paper originated from a study by Richardson et al. in which 
samples were collected from 37 students living in one dormitory at the University of Chicago 
(9). Biotic samples were collected from the students’ dominant hand (categorized in the 
metadata as “skin”) and abiotic samples were collected from their bed sheets, bedroom door 
handles, floors, and desks (categorized in the metadata as “surface”). The V4 region of the 
16s rRNA gene was amplified and sequenced using the Illumina® MiSeq™ system (11). The 
metadata categories of interest to our project included sample type, roommate status, and 
sample-ID-associated roommate pairs (or groups). The metadata and the raw sequences are 
available from Qiita (ID 12470) and from the European Nucleotide Archive (ENA) of the 
European Bioinformatics Institute (EBI) (project number PRJEB33050/ERP115809, at 
https://www.ebi.ac.uk/ena/browser/view/PRJEB33050?show=reads) (12).  
 
Data processing in QIIME2. Prior to data processing, an “occupancy” column describing 
roommate status was added to the metadata file using R Studio version 4.1.2 and the tidyverse 
package (13, 14). Individuals were categorized as “single-occupants” if they had 0 roommates 
or categorized as “multiple-occupants” if they had 1, 2, or 3 roommates. Data processing was 
performed using QIIME2  (10). Raw sequence reads were imported to QIIME2 and 
demultiplexed. Sequence quality control was performed using DADA2 (15) to correct (or 
discard) sequencing errors and define Amplicon Sequencing Variants (ASVs). To maintain 
high sequence quality, the reads were truncated at 150 base pairs (bp), after which there was 
a drop in the median Phred Quality Score. Taxonomy was assigned to the ASVs using a 
trained classifier with reference to the SILVA 16s rRNA database (16), and a bar plot was 
created to visualize taxonomy resolved from taxonomic levels 1-7. Rooted and unrooted 
phylogenetic relationships were then established using MAFFT sequence alignment (17).  
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Feature table filtering and rarefaction. The feature table was first filtered to eliminate all 
samples that were not useful for our analysis (mitochondrial RNA sequences, dormitory 
common area samples, samples categorized as “NA”). The feature table was used to generate 
an alpha rarefaction plot from which an optimal sampling depth of 5195 was chosen. At this 
depth, representative sample richness is maintained while preserving all 594 samples from 
the 37 students and their bedrooms. To first determine if biotic and abiotic samples were 
significantly different (and therefore should be kept separate for the main analysis), the 
feature table was filtered to produce two separate tables containing only single-occupancy or 
only multiple-occupancy samples. For our main analysis, to assess differences between single 
and multiple occupancy dorms, the feature table was filtered to produce two separate tables 
containing only biotic or only abiotic samples.  
 
Alpha and beta diversity analysis. Alpha and beta diversity metrics were evaluated and 
visualized in QIIME2 (10). To first determine if biotic and abiotic samples were significantly 
different, Kruskal-Wallis pairwise testing (18) was used to evaluate Shannon’s diversity (19), 
Faith’s Phylogenetic diversity (20), and Pielou’s evenness (21) within biotic and abiotic 
samples (significance level p < 0.05). Subsequently, differences between single and multiple 
occupancy dorms were assessed by Weighted Unifrac and Unweighted Unifrac (22), Jaccard 
Index (23), and Bray-Curtis Dissimilarity (24). The results of beta diversity analysis were 
then evaluated by pairwise permutational multivariate analysis of variance (PERMANOVA, 
significance level q < 0.05) (25). The false discovery rate approach was used to correct for 
multiple comparisons, producing a q-value (adjusted p-value).  
 
Unique taxa. To determine the number of taxa unique to single or unique to multiple-
occupancy dorms, a taxa bar plot was generated as described above then visualized at the 
species level in QIIME2 (10). A comma-separated values (CSV) file containing the relative 
abundance of each organism in each unique sample was exported from QIIME2 and analyzed 
in Excel (v. 16.60). Samples were grouped by occupancy status (single or multiple) then the 
total abundance of each taxon in both groups was determined using the sum function in Excel. 
Taxa were considered unique to one group if their total abundance in the opposite group was 
0, and this was summarized using the countif function. The number of shared taxa was 
obtained by subtracting the number of taxa unique to each group from the total number of 
taxa in the entire dataset. Unique and shared taxa between single and multiple-occupancy 
rooms for both biotic and abiotic groups were visualized using the VennDiagram package in 
R (v. 4.1.2) (13, 26).  
 
Differential abundance. Differential abundance at the genus level was assessed in R (v. 
4.1.2) using the following packages: qiime2R, phyloseq, and DEseq2 (27–29). Rare genera 
were pruned if relative abundance was less than 0.0005 and significance was assigned using 
an adjusted p-value of p < 0.05. Using the ggplot2 package (30) in R (v. 4.1.2), differential 
abundance was visualized as log2 fold change from single-occupancy.  
 
Indicator taxa. Indicator species analysis was conducted in R (v. 4.1.2) using the following 
packages: qiime2R, phyloseq, and indicspecies (27, 28, 31). Taxonomic data was grouped at 
the species level using a custom-made function in R. Multipattern analysis was performed to 
determine indicator species from single and multiple-occupancy samples. Only indicator 
species with p < 0.01 were reported to narrow down the most relevant and high-confidence 
species.  

 
RESULTS 
Composition drives differences between single and multiple occupancy dorms. To 
investigate differences in composition between and evaluate diversity within single and 
multiple-occupancy dorms, alpha and beta diversity metrics were performed twice using 
QIIME2, once for biotic and once for abiotic samples. Biotic and abiotic samples were kept 
as separate groups because they were found to be significantly different according to all alpha 
and beta diversity metrics (Supplemental Table 1). Kruskal-Wallis testing and Pairwise 
PERMANOVA were used to assess significance as described in the methods (18, 25). Our 
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results showed that the composition of the biotic microbiome significantly differed between 
single- and multiple-occupancy rooms according to Jaccard, Bray-Curtis, and Weighted 
Unifrac metrics (Table 1, q = 0.006, q = 0.035, q = 0.024, respectively) (22–24). For the 
abiotic microbiome, Jaccard, Bray-Curtis, and Unweighted Unifrac were significant (Table 
1, q = 0.0015, q = 0.009, q = 0.003, respectively) (22–24). Faith’s Phylogenetic Diversity (20) 
of abiotic samples was the only alpha diversity metric that significantly differed  between 
single- and multiple-occupancy rooms (Table 1, q = 0.028), indicating that multiple-
occupancy samples tend to have more phylogenetic variation than single-occupancy samples. 
No other alpha diversity metrics were significant for either sample group. The significant beta 
diversity metrics indicate that single- and multiple-occupancy dorms are compositionally 
dissimilar, and this dissimilarity is more likely driven by abundance (Bray-Curtis, (24)) and 
observed ASVs (Jaccard, (23)) rather than phylogeny because the two metrics that incorporate 
phylogenetic distance (Weighted and Unweighted Unifrac, (22)) were inconsistently 
significant.  

 
 Diversity Metric Biotic Abiotic 
Alpha Observed Features 0.492 0.060 

Shannon’s Diversity Index 0.930 0.357 
Faith’s Phylogenetic Diversity 0.552 0.028* 
Pielou’s Evenness 0.995 0.943 

Beta Weighted Unifrac 0.024* 0.204 
Unweighted Unifrac 0.078 0.003* 
Jaccard Distance 0.006* 0.0015* 
Bray-Curtis Dissimilarity 0.035* 0.009* 

 
In both biotic and abiotic samples, multiple-occupancy dorms have more unique taxa 
than single-occupancy dorms. To better understand the compositional differences between 
single- and multiple-occupancy rooms, we calculated the number of taxa unique to each room 
type using the taxa bar plot generated in QIIME2. We found that multiple-occupancy dorms 
had more unique taxa than single-occupancy dorms in both abiotic and biotic sample groups 
(Figure 1). Despite the large number of taxa unique to each room, single- and multiple-
occupancy dorms shared 56.2% of taxa from abiotic samples and 46.7% of taxa from biotic 
samples (Figure 1).  
 

Table 1. Single and multiple-occupancy rooms significantly differ in both their biotic and abiotic microbiomes. 
Numbers represent q-values. * indicates statistical significance (q < 0.05) by Kruskal-Wallis testing (for alpha diversity 
metrics) or by Pairwise PERMANOVA (for beta diversity metrics). 
 

FIG. 1 Multiple-occupancy dorms have more unique taxa than single-occupancy dorms. (a) Abiotic unique and shared 
taxa. (b) Biotic unique and shared taxa. Numbers of shared and unique taxa were determined using taxa bar plots generated 
by QIIME2. Bracketed numbers reveal raw values for taxa within multiple- or single-occupancy categories. Overlap 
represents the shared taxa between both room types. 
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Common taxa decrease in abundance from single to multiple occupancy dorms. 
Although we discovered a large number of taxa unique to each room type, we sought to further 
investigate the taxa that were shared between single- and multiple-occupancy rooms using 
differential abundance analysis. This analysis aims to detect differences in taxonomic 
composition between two conditions. For our study, this analysis was done at the genus level 
using DESeq2 (29). Genera whose relative abundance changed significantly between single 
and multiple occupancy rooms were included in Figure 1, as defined by a p-value of less than 
0.05. Overall, genera which showed significant changes in abundance mostly decreased when 
moving from single to multiple occupancy dorms. In particular, only the Lactobacillus and 
Turicella genera showed an increase in abundance in the multiple occupancy dorms, and these 
changes were relatively small. The Corynebacterium genus showed the largest decrease in 
abundance in our analysis, with over a 30-fold decrease in abundance between single and 
multiple occupancy dorms. Overall, in performing differential abundance analysis we found 
that fifteen genera showed significant changes in abundance, most of which were decreases, 
between single and multiple occupancy dorms.  
 
Indicator species delineate single and multiple occupancy dorms. Our taxonomic analysis 
of single and multiple-occupancy samples revealed that each group has its own subset of 
unique taxa. To further examine what species are unique to single and multiple-occupancy 
samples, we performed indicator taxa analysis. This analysis was performed separately on 
biotic and abiotic samples. Only the indicator taxa resolved to the species level with a p-value 
equal to or less than 0.01 were included in this analysis to return the most biologically 
informative and significant species. The a-value measures the likelihood that a sample 
containing the indicator species truly belongs to the given group. The b-value reflects the 
likelihood that all samples in the given group contain the indicator species. Indicator values 
combine the a- and b-values and measure how likely it is that the indicator species will be 
present in all the samples of only one specific group. We consistently observed that a-values 
were lower than b-values for all sample groups (Table 2). This suggests that these indicator 
species represent organisms that are unique to their group but are only found in a minority of 
total samples. The samples with the largest number of indicator species came from single-
occupancy dorms (Table 2b, c). Fewer species were found for abiotic multiple-occupancy 
dorms, and no indicator species were identified for biotic multiple-occupancy dorms (Table 
2a). These indicator species delineate single- and multiple-occupancy samples and allow 
further exploration of the biological relevance of the organisms unique to a specific group. 
Single occupancy dorms share indicator species between biotic and abiotic samples. 
During our analysis of indicator taxa, we observed that the same indicator species were 
present in both biotic and abiotic samples for the single occupancy setting. The four indicator 
species common to both abiotic and biotic single-occupancy samples were: Corynebacterium 
matruchotii, Prevotella loescheii, Prevotella oulorum, and Prevotella saccharolytica (Table 
2d). Among these species, Corynebacterium matruchotii had the highest indicator value 
across both biotic and abiotic samples (Table 2d). The presence of indicator species common 
to both biotic and abiotic samples illustrates how an individual’s microbiome can shape the 
microbiome of their physical environment and vice versa. These results indicate that 
significant indicator species delineate single-occupancy settings from multiple-occupancy 
and that this delineation is independent of sample type. 
 
DISCUSSION 
Given the large impact of the microbiome on human development and its ability to imprint 
on abiotic environments, further research was needed to elucidate how microbiome 
composition is influenced (3, 4). Previous research has shown that cohabitation has an impact 
on the microbial composition of biotic and abiotic environments (1, 4). However, no study 
had yet examined the effect of cohabitation on microbiome composition in a living 
environment where a large population of diverse individuals share the same space.  

To increase the current understanding of how the microbiome changes in shared settings, 
we analyzed data collected by Richardson et al. to explore differences in the biotic and abiotic 
microbiomes between single and multiple-occupancy dormitories (9). Our findings 
demonstrate that cohabitation in the college dormitory setting alters the microbial 
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Organism A-value B-value Indicator value p-value 
(A) Abiotic Multi-occupancy indicator species 

Actinomyces graeventizii 0.80266 0.22596 0.426 0.005 
Bdellovibrio bacteriovours 0.78787 0.22115 0.417 0.005 
Corynebacterium mycetoides 0.94533 0.0625 0.243 0.005 
Roseomonas frigidaquae 0.9024 0.05769 0.228 0.01 

 
(B) Abiotic single occupancy indicator species 

Corynebacterium matruchotii 0.8401 0.43646 0.606 0.005 
Kocuria marina 0.81486 0.42541 0.589 0.005 
Prevotella loescheii 0.86983 0.20994 0.427 0.005 
Peptoniphilus duerdenii 0.77195 0.22099 0.413 0.005 
Actinomyces dentalis 0.83883 0.1768 0.385 0.005 
Prevotella oulorum 0.8047 0.17127 0.371 0.01 
Selenomonas sputigena 0.86482 0.13812 0.346 0.005 
Prevotella oris 0.72893 0.14917 0.33 0.01 
Prevotella intermedia 0.99634 0.09945 0.315 0.005 
Streptococcus agalactiae 0.96404 0.09945 0.31 0.005 
Prevotella saccharolytica 0.81439 0.1105 0.3 0.005 
Anaerococcus lactolyticus 0.99263 0.0884 0.296 0.005 
Campylobacter concisus 0.9696 0.08287 0.283 0.005 
Filifactor alocis 1 0.07735 0.278 0.005 
Prevotella micans 0.90744 0.07735 0.265 0.01 
Johnsonella ignava 0.97226 0.07182 0.264 0.005 
Alloprevotella rava 0.93492 0.04972 0.216 0.01 
Phocaeicola abscessus 1 0.03867 0.197 0.005 
Catonella morbi 1 0.03867 0.197 0.01 
Prevotella marshii 1 0.02762 0.166 0.01 

 
(C) Biotic single-occupancy indicator species 

Corynebacterium matruchotii 0.8203 0.7083 0.762 0.005 
Leptotrichia buccalis 0.8652 0.4167 0.6 0.005 
Prevotella loesiceii 0.824 0.4167 0.586 0.01 
Prevotella nigrescens 0.7703 0.375 0.537 0.01 
Alloprevotella tannerae 0.937 0.2917 0.523 0.005 
Prevotella denticola 0.9255 0.2917 0.52 0.01 
Prevotella oulorum 0.8761 0.2917 0.506 0.005 
Leptotrichia hongkongensis 0.7864 0.2917 0.479 0.005 
Prevotella saccharolytica 0.9352 0.2292 0.463 0.005 
Streptococcus anginosus 0.7272 0.2917 0.461 0.005 
Prevotella veroalis 0.9541 0.2083 0.446 0.005 
Streptococcus mutans 0.8566 0.2292 0.443 0.005 
Porphyromonas uenonis 0.9196 0.125 0.339 0.01 

 
(D) Shared single-occupancy indicator species 

Organism Abiotic indicator value Biotic indicator value 
Corynebacterium matruchotii 0.606 0.762 
Prevotella loescheii 0.427 0.586 
Prevotella oulorum 0.371 0.506 
Prevotella saccharolytica 0.3 0.463 

Table 2. Indicator species are present in single- and multiple-occupancy abiotic samples and single-occupancy biotic 
samples. (a) Abiotic multiple-occupancy indicator species. (b) Abiotic single-occupancy indicator species. (c) Biotic single-
occupancy indicator species. (d) Shared single-occupancy indicator species. Only taxa resolved to the species level with p 
≤ 0.01 are shown. A-value is the positive prediction value and indicates the likelihood of a sample with this organism truly 
belonging to the given group. B-value is the specificity value and estimates the likelihood that every sample within the given 
group will contain the indicator species. Indicator value is a measure of how likely it is that a given organism will be present 
in all samples of only one specific group. 
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composition of the biotic and abiotic environment. We have shown that beta diversity 
significantly differs between single and multiple-occupancy dorms, indicating the two 
communities are dissimilar. Further analysis of shared and unique taxa between single and 
multiple-occupancy samples indicated that multiple-occupancy samples tend to have more 
unique taxa and less abundant shared taxa. Finally, we performed indicator taxa analysis to 
determine the unique species found in single and multiple-occupancy environments. This 
analysis revealed that single-occupancy environments have a large number of indicator 
species and that there are indicator species shared between abiotic and biotic single-
occupancy samples. Multiple-occupancy environments had fewer indicator species in general 
and indicator species were only found for abiotic multiple-occupancy samples. This suggests 
that it may be more difficult to identify multiple occupancy samples using indicator taxa 
compared to single occupancy samples. 
 
For both biotic and abiotic sample groups, beta diversity highlights significant 
compositional differences between single- and multiple-occupancy dorms. We first 
investigated if there was a significant difference in microbial diversity within and between 
single- and multiple-occupancy dorms. The results of these analyses revealed several 
significant differences in beta diversity in both the biotic and abiotic environments after data 
filtering, which suggested the two room types had distinct microbial compositions (Table 1). 
The lack of significant results in alpha diversity metrics suggested that the biotic and abiotic 
samples had similar levels of richness and abundance in both single and multiple-occupancy 
dormitories at the local level and indicated that single samples did not significantly differ in 
their diversity (Table 1). However, both the biotic and abiotic categories displayed several 
significant beta diversity results, which suggested the two room types as a whole were 
significantly dissimilar (Table 1). This data suggests that having multiple cohabitants within 
a single dorm alters the diversity of both the biotic and abiotic environments in terms of 
observed features and abundance. These initial results aligned with our hypothesis that 
cohabitation affects the microbial diversity of the skin microbiome and the physical 
environment. As the alpha diversity metrics were inconclusive, we decided to focus our study 
on determining the underlying causes behind the differing beta diversity.  
 
Multiple-occupancy dorms have more unique taxa and less abundant shared taxa 
compared to single-occupancy dorms. Taxonomic analysis revealed that despite having a 
46.7% overlap in taxa between single and multiple-occupancy dorms in the biotic 
environment, multiple-occupancy dorms had 251 more unique taxa than single-occupancy 
dorms (Figure 1a). This result was mirrored in the abiotic environment, where multiple 
occupancy dorms had 684 more unique taxa than single-occupancy dorms, despite a 56.2% 
overlap (Figure 1b). These results suggest a greater variety in bacterial taxonomy in multiple-
occupancy dorms, possibly due to a greater number of unique microbiomes between the 
occupants, as compared to those who live alone. It can be hypothesized that since each 
individual has a unique microbiome, the presence of more individuals invites the possibility 
of more unique species. However, due to a lack of research in this area, there are no previous 
studies that can corroborate or explain these results, therefore this knowledge gap presents an 
ideal area for future research. Differential abundance analysis revealed that Lactobacillus and 
Turicella genera were, to a small degree, relatively more abundant in multiple-occupancy 
dorms than single-occupancy dorms (Figure 2). The Lactobacillus genera is an important 
member of the gut microbiome, and one of the most prominent probiotics (32). They have 
also been reported as endogenous inhabitants of healthy skin, which would explain why they 
were present in the skin samples, and may have been transferred to the abiotic environment 
through touch (33). Further research is required to confirm why these bacteria are more 
prominent in multiple-occupancy dorms, but it may be due to a greater surface area of skin in 
the room when there are multiple cohabitants, allowing a denser population of this genera to 
form. Turicella have been previously reported to be among the most common commensal 
bacteria within the external auditory canal, and may have been found on the skin microbiome 
due to scratching or touching of the ears (34). The increased abundance of this genera in 
multiple-occupancy dorms may be due to an increased number of individuals in the room, but 
further research is necessary to confirm this. The most drastic difference in abundance, 
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however, was seen in the 30-fold decrease in Corynebacterium abundance when moving from 
single to multiple-occupancy rooms (Figure 2). Members of the Corynebacterium genus have 
been reported as members of the upper respiratory tract and the normal skin flora, which 
explains why they were present in skin samples (3, 35). Transference from the skin to abiotic 
surfaces such as doorknobs and bedsheets would explain the presence of these bacteria in the 
abiotic environment. However, it is unclear why this genus is underrepresented in multiple-
occupancy dorms, and further research is required to fill this gap in knowledge. Overall, the 
differences in unique taxa and shared abundance between single and multiple-occupancy 
dorms aligned with our hypothesis that having one or more roommates affects the diversity 
of the skin microbiome and physical environment.  
 
Biotic and abiotic samples share indicator taxa in a single-occupancy setting. Having 
established the existence of significantly diverse microbial communities between single and 
multiple-occupancy dorms, we sought to determine if the presence of any particular taxa 
could explain the differences seen in the two communities. Interestingly, single-occupancy 
dorms had the same four indicator species for both the biotic and abiotic environments. One 
of which, Corynebacterium matruchotii, has been previously found in the human microbiome 
and plays a major role in tooth biofilm formation (36). This bacterium is among the most 
prevalent species in the oral microbiome, but we have yet to understand how this bacterium 
was transferred to the skin microbiome and abiotic environment (36). Of note, the other three 
indicator species which belong to the Prevotella genus have also been shown to play a role 
in oral biofilm formation, and can lead to periodontitis when oral homeostasis is compromised 
(37). The Prevotella genus also inhabits the vaginal and gut microbiotas and may be 
recovered from respiratory tract infections (38). Since these species are commensal members 
of the biotic microbiome, it can be hypothesized that they were transferred to the abiotic 
environment from poor hygienic practices or lack of regular sanitation. The colonization of 
oral and mucosal sites by all four indicator species suggests transmission into the abiotic 
environment through sneezing, coughing, or breathing. The presence of these unique 
indicator taxa in single-occupancy rooms serves to explain how the compositional differences 
in microbial communities between single and multiple-occupancy rooms may have arisen, 
and further suggests that cohabitation affects diversity of the microbiome.  
 
Multiple-occupancy dorms have four distinct abiotic indicator species. Multiple-
occupancy dorms contained four distinct indicator species, all of which were present in the 
abiotic samples (Table 2a). The lack of indicator species in the biotic environment presents 
an interesting field of research for future studies to explore, as the dataset for our particular 

FIG. 2 Fifteen genera show 
significant changes in abundance, 
most of which decrease, between 
abiotic samples from single and 
multiple occupancy dorms. 
Relative abundance was calculated 
for single and multiple occupancy 
samples. Log-transformed changes in 
abundance from single to multiple 
occupancy dorms were plotted along 
the x-axis. This analysis included 
only genera with significant changes 
in abundance denoted by a p-value of 
less than 0.05. 



UJEMI Luongo et al. 

September 2022   Volume 27:1-12 Undergraduate Research Article • Not refereed https://jemi.microbiology.ubc.ca/ 9 

study was unable to provide an explanation for this observation. Of the listed indicator 
species, Actinomyces graeventizii has been previously documented as a member of the 
oropharyngeal flora and has been described in several clinical cases of infections (Table 2a) 
(39). The role of this bacteria as an indicator species in multiple-occupancy dorms suggests 
possible increases in respiratory infections in areas of cohabitation. This has previously been 
discussed by Yang et al., who observed a strong association between multiple-occupancy 
rooms and an increased rate of respiratory infections in a college dormitory in China (40). 
Bdellovibrio bacteriovours, while not previously described as members of the biotic or abiotic 
microbiomes, have been shown to be potential alternatives to antibiotics due to their ability 
to prey on Gram-negative bacteria (41). The biological reasoning behind their role as an 
indicator species for multiple-occupancy dorms cannot be explained by the scope of this 
study. While Corynebaterium mycetoides itself has not been well described as a member of 
the human microbiome or the physical environment, the Corynebacterium genus as a whole 
has been reported to make up a large portion of the skin flora and upper respiratory tract (3, 
35). Roseomonas frigidaquae has only previously been isolated from a water-cooling system, 
so its role as an indicator species in multiple-occupancy dorms for the abiotic environment 
must be explored further in future studies (42). In terms of our research question, the presence 
of indicator taxa for multiple-occupancy dorms suggests unique differences in the microbial 
communities between single and multiple-occupancy dorms.  
 
Limitations Our selected data was taken from a single college dormitory, therefore any 
conclusions we make cannot easily be extrapolated to other age cohorts or environments. The 
small sample size of this dataset makes it difficult to apply our results to the general 
population, and further research is required to determine if these findings hold when more 
diverse environments and individuals are included. Since all data was collected from a college 
dormitory, all respondents likely belong to a similar socioeconomic class, therefore making 
it difficult to apply our results to a greater diversity of social statuses. Further, the metadata 
contained many other pieces of information (such as sex, type of abiotic surface, frequency 
of sheet washing, length of time with windows open) that could be contributing to the 
observed differences. While we have attempted to control for confounding factors by filtering 
the metadata, these distinct categories may be contributing to the observed effects. In addition, 
our study focused on beta diversity rather than alpha diversity, so all conclusions are based 
on whole population differences. Lastly, our study is unable to explain why certain taxa are 
present in single or multiple-occupancy dorms and can only describe that these differences 
exist. Further research is required to explain why certain genera are more present in one 
environment than the other, as this could not be answered by our particular dataset.  
 
Conclusions Since the human microbiome has such a large impact on human life, it is critical 
to gain a deeper understanding of how the microbiome is formed and what aspects of a given 
environment can influence its composition. Living with roommates has previously been 
found to be a confounding factor in creating an effective prediction model that matches a 
microbiome to an individual (9). By using microbiome data collected in college dormitories 
to conduct diversity and taxa analyses, this study established that having one or more 
roommates induces significant changes on the diversity of the microbiome, and distinct 
indicator taxa are present in both single and multiple occupancy rooms. This data suggests 
that certain microbial taxa have the potential to be used as indicators to determine whether an 
individual lives alone. In addition, our data contributes to the idea that people leave behind 
microbial signatures that are unique to their specific person. These findings provide the 
information necessary to inspire further research into the critical factors influencing the 
microbial composition of the biotic and abiotic environments within college dormitories.  
 
Future Directions Our investigation into the effect of cohabitation on the biotic and abiotic 
microbiomes came to its conclusions by aggregating all multiple-occupancy dormitories 
together, disregarding differences in the number of inhabitants. Therefore, the design of this 
study prevented comparisons between individual rooms, and further studies should explore 
the differences in microbial diversity in each room and elucidate potential trends in increasing 
numbers of roommates. Considering previous findings on the role of the unique microbiome 
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in profiling individuals who live alone, further research may also seek to predict which type 
of room an individual inhabits by looking for the presence of specific taxa on their skin or in 
their environment. Our study determined significant differences in beta diversity between 
biotic and abiotic environments, however the scope of our study did not extend to differences 
between the different types of sampled abiotic surfaces. It would therefore be worthwhile to 
examine if there are significant differences between each surface type. Further, possible 
confounding factors in our results may be elucidated by further analysis of other metadata 
categories, including sex of the inhabitant and frequency of sheet washing.   

Differential abundance analysis revealed changes in shared taxa between single and 
multiple-occupancy dorms, however the biological reasoning behind these differences could 
not be elucidated using our particular dataset. Therefore, future studies could evaluate the 
conditions that lead to the observed differences in abundance. In addition, indicator bacterial 
taxa were identified for single and multiple-occupancy dorms, but the reasoning behind their 
presence in certain environments has not yet been explained. Since many of the indicator taxa 
have not been thoroughly described as being part of the skin microbiome or abiotic 
environment in previous literature, future studies may seek to address this knowledge gap. 
Future studies may also strive to explain the mechanism behind altered microbiomes in the 
presence of roommates and understand how increased microbial competition may play a role 
in changing the microbiome.  
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