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SUMMARY   Parkinson’s Disease is a common neurodegenerative disorder that results in both 
motor and non-motor symptoms. The subtle nature of early Parkinson’s Disease symptoms is 
often misinterpreted as normal signs of aging, and a lack of definitive tests to confirm 
Parkinson’s Disease contribute to diagnosis delays. Because gastrointestinal symptoms are 
often observed years before motor symptoms, previous studies have focused on the 
relationship between changes in the gut microbiota composition and the pathophysiology of 
Parkinson’s Disease. Previous findings have yielded conflicting results regarding effects of 
various lifestyle factors on gut microbiota of Parkinson’s patients. To investigate 
contradictions observed from previous studies, our study aims to determine effects of body 
mass index (BMI) levels, alcohol consumption, and meat consumption on the gut microbiota 
of Parkinson’s patients. Our results indicated that gut microbial diversity decreased in 
overweight and obese Parkinson’s patients compared to healthy Parkinson’s patients. There 
was no relationship between alcohol or meat consumption and gut microbiome composition 
of Parkinson’s patients. The Sutterallaceae and Veillonellaceae taxonomic families have been 
previously associated with obesity and diseases that have implications to the gut microbiota. 
Unique family taxa analysis determined that the Sutterellaceae family was more abundant in 
Parkinson’s Disease patients of the obese BMI grouping. Similarly, indicator taxa analysis 
determined two families were significantly associated to the obese BMI grouping, one of 
which being the Veillonellaceae family. These results indicate that changes in body mass may 
affect gut microbial composition and present relevant taxa to be further investigated for 
understanding the effect of body mass on Parkinson’s Disease.  
 
 
INTRODUCTION 

arkinson’s Disease (PD) is a chronic, progressive neurodegenerative disease that affects 
both motor and non-motor features and affects more than 10 million people globally (1). 
The motor and non-motor symptoms of PD are attributed to the loss of striatal 

dopaminergic neurons and non-dopaminergic neurons, respectively (1). The effect of PD on 
dopaminergic neurons in the brain leads to decreased dopamine levels and motor impairments 
such as tremors, rigidity, balance difficulties, and loss of spontaneous movement (2). PD is 
now considered a multi-systemic disease that affects both the central and peripheral nervous 
systems, resulting in several non-motor symptoms including gastroparesis and constipation 
(2). Early PD symptoms present in very subtle ways, and non-motor symptoms are often 
misinterpreted as normal signs of aging, thus delaying diagnosis (1). Since there are no 
definitive tests to confirm the presence of PD, current diagnoses require a review of the 
patient’s history, assessment of symptoms, and the ruling out of alternative diagnoses (1).  
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The gastrointestinal symptoms of PD are often observed years before the onset of motor 
symptoms; thus, the relationship between changes in the gut microbiota composition and the 
pathophysiology of PD is an area that warrants further research (2, 3). The gut microbiota 
consists of microbes that contribute to host health and are involved in processes such as 
dietary fibre breakdown, vitamin production, regulation of metabolism, and modulation of 
neurological function (3). It has been shown that the relationship between microbial diversity 
and stool consistency appears to be modified by PD (3). Similarly, constipation and reduced 
bowel movement frequency are known risk factors of PD development (3). Therefore, 
exploring the connections between the microbiota and gut function in PD may provide a better 
understanding regarding the etiology and pathophysiology of the disease (3). 

To provide insight into how the microbiota contributes to gastrointestinal disturbances 
observed in PD patients, Cirstea et al. assessed the associations between the microbiota 
composition, stool consistency, constipation, and systemic microbial metabolites in PD (3). 
The study was performed on 300 PD patients and controls who provided fecal samples for 
microbiota sequencing and serum for untargeted metabolomics (3). The study’s dataset 
includes information on motor and nonmotor PD symptoms, medications, diet, and 
demographics (3). A study of this dataset by Dutra et al. investigated the effects of alcohol 
consumption and increasing body mass index (BMI) status on the gut microbiota of PD 
patients (4). They reported no correlation between alcohol consumption levels, gut 
microbiome composition, and PD progression, as well as no association between BMI, gut 
microbiome composition, and PD status (4).  

However, several studies suggest a link between obesity and the human gut microbiome 
(5). Microbial diversity in the human gut has been confirmed to correlate with BMI levels, 
and it was found that the microbial communities in the gut differed significantly between 
obese or overweight, normal, and underweight individuals (5). Compositional changes in the 
gut microbiome have been reported to be linked to obesity in multiple studies, specifically 
for overweight and obese individuals with BMIs of 25.0-29.9 and 30+ respectively (6, 7). 

Previous studies exploring the link between BMI and PD have yielded contradictory 
results. One study claimed that high BMI was a potential risk factor for PD (8). However, a 
separate study did not find any significant associations between BMI and the risk of 
developing PD (9). Another study that focused on BMI, diabetes, and PD first found that 
having diabetes was linked to a higher risk of PD development (10). As diabetes is frequently 
associated with higher BMI status, researchers assumed that this would also lead to the 
positive correlation of BMI and risk of PD (10). Contrary to this belief, however, researchers 
found that lower BMI was linked to a higher risk of PD (10). While there have been numerous 
studies on the relationship between BMI and PD, conflicting findings shed light on the need 
for further studies to be done to address the contrasting results.  

Similar to BMI, past findings on the link between alcohol and meat consumption, the gut 
microbiome, and PD have yielded inconsistent findings. In contrast to Dutra et al., who 
reported no correlation between alcohol consumption and the gut microbiota, it has been 
suggested that alcohol intake can directly alter its composition. Lee et al. reported greater 
microbial diversity in a group that consumed alcohol compared to the control group (11). 
Regarding alcohol and PD, one study showed no link between alcohol consumption and the 
risk of developing PD (12), whereas another suggested that moderate alcohol consumption 
may protect against disease progression (13). In relation to meat consumption, a study 
comparing the gut microbial diversity of vegetarian versus non-vegetarian adults reported an 
increase in the ratio of highly bile-tolerant organisms such as Bacteroidetes and a decrease in 
the level of Firmicutes in non-vegetarians (14). Fernandez et al. demonstrated that frequent 
consumption of red meat has been linked to the incidence and progression of PD, as it is 
associated with the accumulation of α-synuclein in the enteric nervous system (15). Similarly, 
another study reported that the high iron content of heme-rich red meat may contribute to 
earlier progression of PD (16). However, a separate cohort study reported an inverse 
relationship between processed meat and sausage consumption and PD occurrence, 
suggesting that meat consumption may exert a potential neuroprotective effect on PD onset 
(17). Due to the conflicting results of previous findings, further studies are required to 
establish the link between alcohol and meat consumption and PD.  
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Based on literature that suggests that each of these three factors may alter the composition 
of the gut microbiota, we hypothesize that differences in gut microbial diversity will be 
observed between PD patients with differing BMIs, alcohol intake, and meat consumption in 
comparison to the non-PD control group. We aim to confirm previous findings and investigate 
the contradictions regarding each lifestyle factor, by analyzing the metadata from Cirstea et 
al. (3). Understanding connections between BMI, alcohol consumption, and meat 
consumption and PD will help to determine which of these lifestyle factors cause significant 
differences in the gut microbial communities of PD patients. 

 
 
METHODS AND MATERIALS 

Sampling and metadata processing. This study was conducted using the original dataset by 
Cirstea et al., containing 16S rRNA sequences from 197 adult individuals with PD and 103 
controls of the same age range (40 to 77 years old) (3). Data was also collected on various 
factors such as medications, diet, and demographics (3), although the focus of this study was 
alcohol and meat consumption, and BMI in particular. Dietary information was collected 
using the EPIC-Norfolk Food Frequency Questionnaire (FFQ) (18) and processed by the FFQ 
EPIC Tool for Analysis (FETA) into unitary food values reported as average daily intake 
(19). 

The 300 human participants provided fecal samples that underwent DNA extraction, 
amplification of the 16S rRNA gene, and Illumina sequencing to get raw sequence data (3). 
Cirstea et al. provided the demultiplexed raw sequence data, which was imported into the 
Quantitative Insights Into Microbial Ecology 2 (QIIME 2) next-generation bioinformatics 
platform (20). The sequences were quality controlled using the Divisive Amplicon Denoising 
Algorithm (DADA2) tool (21) to determine amplicon sequence variants (ASVs). Since all 
sequences were of reasonable to high quality, a truncation length of 251 nucleotides was 
selected, which was the maximum read length. 
 
Metadata grouping and filtering. Before proceeding with further analysis, the original 
metadata was sorted and grouped for the purpose of this study. Samples that were missing 
data for our three selected lifestyle factors of interest were removed and subjects were 
grouped into categories based on predetermined numerical ranges for each lifestyle factor. 
For BMI, subjects were grouped into underweight, healthy, overweight and obese categories 
(TABLE S1) based on the Centers for Disease Control and Prevention (CDC) interpretations 
of BMI scores (22). For alcohol consumption, the World Health Organization (WHO) 
definition of a standard drink as 10 grams (23) was used to define low, moderate, and high 
groupings (TABLE S2). Finally, for meat consumption, National Health Service (NHS) 
recommendations as well as Canadian daily meat consumption statistics (24, 25) were 
considered for the grouping of subjects into low, moderate, and high consumption (TABLE 
S3). 

The data was then filtered using QIIME 2 to produce separate tables containing either PD 
patients or control subjects only. Taxonomy-based filtering of mitochondria and chloroplast 
sequences was also performed to exclude archaea and eukarya domains. 
 
Taxonomy and diversity metrics in QIIME 2. Alpha rarefaction curves were generated for 
each filtered table and a sampling depth of 10232 was chosen, as this captured the maximum 
number of features while retaining a reasonable number of samples in each category, to 
adequately represent sample richness (Figure S1). The underweight category was disregarded 
in further analyses as it contained too few samples for both PD and control.   

         Once rarefaction depth was defined, the same sampling depth was used to run core 
metrics. To calculate these core metrics, Multiple Alignment using Fast Fourier Transform 
(MAFFT) was used to align ASVs and relate features to one another (26). Representative 
sequences in the feature tables were also used to generate a tree and classify taxonomy to 
microbial organisms found in the samples via several QIIME 2 plugins (27-31). The resulting 
rooted phylogenetic tree and taxa barplots were used for further taxonomic analysis on 
RStudio. From these core metrics, alpha and beta diversity analyses were performed between 
categories of each lifestyle factor for both PD and control filtered datasets. For alpha 
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diversity, Faith’s phylogenetic diversity (32) and Pielou’s evenness (33) plots were generated. 
For beta diversity, Unweighted Unifrac (34) and Bray Curtis dissimilarity (35) plots were 
generated but were not included in this manuscript as they did not yield significant results. 
Data outputs from QIIME 2 were exported into RStudio for further visualization and analyses. 
 
Visualization of QIIME2 outputs on R. tidyverse, qiime2R, and ggplot2 (36-38) R 
packages were used to import QIIME 2 data outputs and sorted metadata into R. According 
to the code in the Supplemental R Script, alpha diversity metrics plots of Faith’s phylogenetic 
diversity (32) and Pielou’s evenness (33) were re-generated on R to visualize microbial 
community richness and microbial species evenness within microbial communities of 
healthy, overweight, and obese BMI groupings in PD patients. 
 
Unique taxa analysis on Excel. 90 taxonomic family groups in PD patients were identified 
from the QIIME 2 taxa bar plot. Samples were sorted according to healthy and obese BMI 
groupings. Within each of the healthy and obese BMI groupings, relative abundances for each 
taxonomic family were calculated. To identify the taxonomic families that are unique to the 
healthy BMI group, all families had a relative abundance of 0 in the obese BMI group were 
counted. For identifying taxonomic families that are unique to the obese BMI group, all 
families had a relative abundance of 0 in the healthy BMI group were counted. The numbers 
of taxonomic families unique to the healthy BMI group, unique to the obese BMI group, and 
present in both healthy and obese BMI groups were then used to generate a Venn diagram. 
The relative abundance percentages for the set of taxonomic families unique to the healthy 
BMI grouping and the set of taxonomic families unique to the obese BMI grouping were 
subsequently used to generate two separate pie charts. 
 
Differential abundance analysis on R. According to the Supplemental R Script, differential 
abundance analysis on healthy and obese BMI groupings of PD patients was performed using 
R and the following R packages: tidyverse, qiime2R, ggplot2, vegan, ape, phyloseq, and 
DESeq2 (36-42). Following import of QIIME 2 outputs and sorted metadata, a phyloseq 
object was created and the dataset was rarefied based on sampling depth determined from the 
QIIME 2 alpha rarefaction curve. Relative abundances for each taxonomic family were 
calculated and only families that were more abundant than 0.05% were considered for 
analysis. The phyloseq object was converted into a DESeq object with the healthy BMI 
grouping set as a reference. Differentially abundant microbes were extracted from the DESeq 
object and an alpha significance level of 0.05 was then set to detect significantly abundant 
taxa among healthy and obese BMI groupings of PD patients. 
 
Indicator taxa analysis on R. According to the Supplemental R Script, indicator taxa 
analysis on the healthy, overweight, and obese BMI groupings of PD patients was performed 
using R and the following R packages: tidyverse, qiime2R, ggplot, phyloseq, and indicspecies 
(36-38, 41, 43). QIIME 2 outputs and sorted metadata were imported into R to create a 
phyloseq object. A family taxonomy table was created and indicator values for each 
taxonomic family were calculated. Significant taxonomic family indicators of healthy, 
overweight, and obese BMI groupings of PD patients were generated as an output. 
 
Script and sorted metadata availability. QIIME 2 data processing code can be found in the 
Supplemental QIIME 2 Script and R data analyses code can be found in the Supplemental R 
Script. 
 
RESULTS 

Greater BMI in PD patients significantly decreases gut microbial phylogenetic 
diversity but does not affect abundance of microbial species. Alpha diversity metrics on 
alcohol consumption, meat consumption, and BMI were determined for both PD and control 
individuals. Regarding alcohol consumption, the only significant difference in gut microbial 
community richness was between moderate and high groupings of control individuals for 
Faith’s phylogenetic diversity (q = 0.01) (TABLE 1). There was no significant difference in 
gut microbial evenness between alcohol groupings for both PD and control individuals  
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Table 1. Faith’s Phylogenetic Diversity between BMI groupings was the only significant alpha diversity metric in PD patients. 
Faith’s phylogenetic diversity and Pielou’s evenness were determined using R for both PD and control individuals. Both richness 
and evenness of gut microbial communities were analyzed for each grouping of BMI, alcohol consumption, and meat consumption. 
* = q < 0.05. 

Group 1 Group 2 Faith’s Phylogenetic Diversity  Pielou’s Evenness 
 

BMI 
PD q-value Control q-value PD q-value Control q-value 

Healthy Obese 0.02* 0.62 0.72 0.84 
Overweight 0.02* 0.36 0.72 0.61 

Obese Overweight 0.32 0.62 0.72 0.61 
 

Alcohol Consumption 
    

High None 0.30 0.11 0.32 0.21 
Moderate 0.68 0.01* 0.75 0.31 

No Moderate 0.29 0.90 0.32 0.26 
 

Meat Consumption 
    

High Low 0.36 0.21 0.96 0.82 
Moderate 0.36 0.35 0.95 0.82 

Low Moderate 0.80 0.17 0.95 0.82 
 
(TABLE 1). There was also no significant difference in phylogenetic diversity or evenness of 
gut microbial communities between meat consumption categories in both PD and control 
individuals (TABLE 1). R generated boxplots of Faith’s phylogenetic diversity and Pielou’s 
evenness revealed that as BMI increases, microbial phylogenetic diversity decreases, 
specifically with healthy PD individuals having significantly greater microbial community 
biodiversity compared to overweight or obese PD individuals (FIGURE 1A). This indicates 
that there are more diverse microorganisms in gut microbial community of healthy PD 
individuals compared to overweight and obese PD individuals. No significant differences 
were observed in microbial community evenness between BMI groupings for both PD and 
control individuals (TABLE 1, FIGURE 1B). Only PD patients of overweight or obese and 
healthy BMI groupings showed significant gut microbial phylogenetic diversity differences 
between each other (q = 0.02) (TABLE 1).  

 

FIG. 1 Significant decrease in Faith’s phylogenetic diversity and no significant differences in Pielou’s evenness observed 
with increasing BMI in PD patients. (A) Alpha diversity analyses on microbial community richness (Faith’s phylogenetic 
diversity) conducted on R across healthy, overweight, and obese BMI groupings in PD patients. Median displayed in the boxplot. 
Error bars indicate the 95% confidence intervals. (B) Alpha diversity analyses on microbial species evenness (Pielou’s Evenness) 
conducted on R within microbial communities of healthy, overweight, and obese BMI groupings in PD patients. Median displayed 
in the boxplot. Error bars indicate the 95% confidence intervals. 
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Less unique microbial families identified in obese PD patients compared to healthy 
but only two differentially abundant families were observed. To conduct an analysis of 
the unique microbial taxa at the family level between healthy and obese PD patients, a Venn 
diagram was created using Excel based on the relative abundance of taxonomic families in 
healthy and obese BMI groups (FIGURE 2). 73 families of microbes were shared among PD 
patients with healthy and obese BMI. PD patients within the healthy BMI group were 
observed to have 13 unique family taxa, compared to PD patients within the obese BMI group, 
who were only found to have 4 unique families of microbes. For PD patients within the 
healthy BMI grouping, the most abundant families were Hafniaceae, Succinivibrionaceae, 
Brachyspiraceae, Campylobacteraceae, and Oscillospiraceae with less abundant families 
including Pseudomonadaceae, Leptotrichiaceae, Gemellaceae, Coriobacteriaceae, and 
Sporomusaceae. The most abundant family taxa among PD patients within the obese BMI 
grouping were Comamonadaceae, Heliobacteraceae, and Caulobacteraceae, with a prominent 
unclassified family being the least abundant of the four families within this group (FIGURE 
2). 

 
 

To analyze the abundance of family taxa between the healthy and obese BMI groupings, 
differential abundance analyses were performed on R (FIGURE S2). Two differentially 
abundant families were found. It was observed that the Sutterelllaceae family is twice as 
abundant in the obese BMI grouping relative to the healthy BMI grouping, represented by a 
log₂ fold change of ~1. A log₂ fold change approaching -2 was observed for the Clostridia 
family, indicating that this family is almost 4 times less abundant in the obese BMI grouping 
relative to the healthy BMI grouping (FIGURE S2).  

11 and 2 significant microbial families indicated in the healthy and obese BMI 
groupings, respectively. To study the significant family taxonomies between the healthy 
overweight, and obese BMI groupings of indicator taxa analysis on PD patients of healthy, 
overweight, and obese BMI groupings was conducted using R. At the family level of 
taxonomy, 11 family taxa were revealed to be significantly associated with the healthy BMI 

FIG. 2 Unique family taxa analysis on PD patients reveals 13 and 4 unique families of microbes with healthy 
and obese BMI groupings, respectively. Relative abundance of microbial families within each unique family is 
calculated using Excel and is depicted with respect to the total number of unique taxa in each group. 
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grouping on PD patients (TABLE 2). With the obese BMI grouping of PD patients, 2 unique 
taxa were revealed to be significantly associated: the Veillonellceae family and a family that 
has yet to be cultured. Studying the A values, the Victivallaceae family has been observed to 
be the most unique to the healthy BMI grouping of PD patients, while the uncultured family 
is most unique to the obese BMI grouping. Reviewing the B values, the Christensenellaceae 
family is the most abundant in the healthy BMI grouping, while the Veillonellaceae family is 
most abundant in the obese BMI grouping. As the stat values take uniqueness and abundance 
into account, the Clostridia family is the most significantly associated with the healthy BMI 
grouping of PD patients, while the Veillonellaceae family is found to be more significantly 
associated to the obese BMI group of PD patients than the uncultured family (TABLE 2). 
 
Table 2. Indicator family taxa analysis on PD patients of healthy, overweight, and obese BMI groupings 
reveals 2 significantly associated families of the obese BMI grouping. Indicator taxa analysis was conducted 
on the family taxonomy level using R. A indicates how unique the family is to the BMI grouping. B indicates 
how abundant the family is within the microbial community of the BMI grouping. The stat value indicates how 
associated the family is to the BMI grouping, ** = p < 0.01, * = p < 0.05. 

BMI grouping Species 
(According to family taxonomy) A B stat p-value 

Healthy Clostridia_UCG-014 0.6220 0.8429 0.724 0.005** 
Christensenellaceae 0.5154 0.9857 0.713 0.005** 
Clostridia_vadinBB60_group 0.5448 0.8429 0.678 0.005** 
UCG-010 0.5729 0.7571 0.659 0.005** 
Anaerovoracaceae 0.4702 0.9143 0.656 0.025* 
Oscillospiraceae 0.4049 1.000 0.636 0.015* 
RF39 0.5187 0.6143 0.564 0.005** 
Victivallaceae 0.6410 0.4429 0.533 0.005** 
Izemoplasmatales 0.5226 0.5000 0.511 0.025* 
NA 0.5001 0.5000 0.500 0.040* 
DTU014 0.5455 0.2571 0.375 0.045* 

Obese Veillonellaceae 0.4947 0.8286 0.640 0.015* 
uncultured 0.8266 0.1143 0.307 0.015* 

 
 

DISCUSSION 

Microbial diversity with alcohol and meat consumption. With previous studies 
revealing conflicting findings relating to the association between gut microbial diversity and 
alcohol and meat consumption (4, 11, 13, 15, 17) our study aimed to investigate these factors 
to see if we could confirm findings from literature. 

A previous UJEMI study found that there was no difference in the gut microbiome 
composition between PD patients with varying alcohol consumption levels (4), however, it 
has been suggested that alcohol consumption can directly alter microbial composition (11). 
Our findings confirmed that differences in microbial diversity between the defined alcohol 
consumption groupings were not significant in PD patients, using both Faith’s phylogenetic 
diversity and Pielou’s evenness alpha diversity metrics (TABLE 1). Interestingly, there were 
significant differences found in control subjects between high and moderate alcohol 
consumption groupings with Faith’s phylogenetic diversity (TABLE 1). One study found that 
moderate alcohol consumption had a protective effect against mortality, compared to those 
who never drank alcohol as well as those who consumed above the median number of drinks 
per day (13). This effect appeared to be more prominent in the control subjects relative to PD 
subjects (13). This suggests that moderate alcohol consumption could be a determining factor 
for differences in microbial composition in individuals without PD. However, since 
significant differences were only observed in control subjects between “high” and “moderate” 
but not “moderate” and “none” (TABLE 1), it is difficult to make definitive claims regarding 
alcohol consumption and its effect on the gut microbiome in PD patients. 

For meat consumption, one study suggested a link between meat consumption and PD 
progression (15), while another suggested that meat has a neuroprotective effect on PD onset 
(17). Despite these previous findings, our study observed no significant differences in 
microbial diversity between “low”, “moderate”, and “high” consumption categories in both 
PD and control subjects, using the two alpha diversity metrics generated (TABLE 1). This 
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may be due to the types of meat that these studies looked at, as most investigated red meat or 
processed meat. In addition, the definitions for meat consumption that we used to group 
subjects into categories may have also influenced the results obtained and findings may differ 
with other studies that used different criteria. Since no significant microbial differences were 
found in PD patients between the various alcohol and meat consumption categories, further 
taxonomic analysis was not performed on these categories. 

Relationship between BMI, microbial diversity, and PD. Although we hypothesized 
that differences in gut microbial diversity would be observed in PD patients between 
categories for all three lifestyle factors, BMI was the only one that showed significant 
differences in PD patients. Specifically, there were significant differences in microbial 
diversity between “healthy” and “overweight” as well as “healthy” and “obese” categories 
using Faith’s phylogenetic diversity (TABLE 1). Microbial diversity also appeared to 
decrease with increased BMI, with the “obese” category showing the least diversity 
(FIGURE1A). These results align with several studies in literature that found decreased 
microbial diversity related to obesity and diabetes (44, 45). However, a previous UJEMI study 
found no statistically significant differences in gut microbiome composition between BMI 
groupings in PD patients (4). Dutra et al.’s study used the same criteria for grouping subjects 
into BMI categories except analyzed the relationship between BMI and gut microbiome 
composition using beta diversity analyses (4). Our study focused primarily on alpha diversity 
analyses, which is what led us to find significant differences in microbial diversity between 
BMI categories. 

Many studies have examined the relationship between the gut microbiota and obesity, but 
few studies have investigated the role of BMI specifically in PD patients (8, 44-47). Our study 
found that the control group did not show a significant decrease in microbial diversity in the 
“overweight” and “obese” categories, whereas the PD group did (TABLE 1). This aligns with 
a study indicating that high-fat diet-induced obesity can contribute to PD progression and 
influence the gut microbiota (46). Another study highlighted that although obesity may not 
play a role in PD pathogenesis, it may be associated with a higher risk of developing PD (9). 
These findings, in combination with our results, suggest that PD patients possess significantly 
different gut microbiome compositions compared to the controls and that the interplay 
between PD and obesity may be a driving factor for this altered microbiota. Despite the 
evidence pointing towards obesity contributing to PD through decreased microbial diversity, 
it is important to distinguish causation versus correlation. It is yet unclear whether PD is a 
consequence of obesity or vice versa, as opposed to a correlation between the two. Several 
studies have investigated the causal role of microbiome alterations in the development of 
obesity as well as PD (8, 44, 47) but the relationship between all three is still under further 
investigation.    

While there were significant differences in Faith’s phylogenetic diversity between BMI 
categories in PD patients, there were no significant differences observed for Pielou’s evenness 
(TABLE 1, FIGURE 1B). Faith’s phylogenetic diversity measures community richness while 
incorporating phylogenetic relationships whereas Pielou’s evenness considers the uniformity 
of each species in the microbial community, indicating if species in a sample have the same 
abundance (48, 49). The absence of significant differences in microbial evenness observed 
between BMI categories (FIGURE 1B) suggests that diversity is likely driven by 
phylogenetic distance. Therefore, investigating specific taxonomic and phylogenetic 
differences in gut microbial composition between BMI categories in PD patients may give 
further insight into the role that obesity plays in PD onset.   

Taxonomic differences in PD patients between healthy and obese BMI groupings. 
Following unique taxa analysis, our findings identified 13 family gut taxa unique to the 
healthy BMI grouping and 4 family taxa unique to the obese BMI grouping of PD patients 
(FIGURE 2). Of the families unique to the obese BMI grouping of PD patients, there are the 
Comamonadaceae, Caulobacteraceae, and Helicobacteraceae families. In a study on relative 
bacterial abundances in saliva samples, Comamonadaceae was found to have a greater 
relative abundance in saliva samples of the obesity group (50), as has been observed in our 
findings with the lack of Comamonadaceae in the healthy BMI grouping and the presence of 
Comamonadaceae in the obese BMI grouping. Comamonadaceae abundance has been found 
to be significantly reduced in PD patients (51), but this is contrary to our observations in PD 
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patients of the obese BMI grouping. This might suggest that low Comamonadaceae 
abundance may only be associated with PD patient groupings of lower BMIs. 
Caulobacteraceae abundance has been associated with increased food intake and decreased 
satiety which are both factors that have been related to obesity (52). This correlates with our 
observations of Caulobacteraceae being unique to the obese BMI grouping. Caulobacteraceae 
has no apparent associations with PD. As unique taxa analysis only considers relative 
abundance of taxonomic families present in samples, the absence of Caulobacteraceae and 
PD relationship in current literature may suggest that our findings of Caulobacteraceae in the 
obese BMI group to be insignificant. As a member of the Helicobacteraceae family, 
Helicobacter pylori gut infections have been observed to be positively correlated with obesity 
(53). H. pylori is reported to have an effect on the development of obesity and obesity is 
reported to have an influence on the risk of H. pylori infections (53). Our findings of 
Helicobacteraceae being unique to the obese BMI grouping coincides with this frequently 
observed relationship between H. pylori infections and obesity. H. pylori infections have also 
been reported in several studies to be associated with increased risk of PD and to further 
contribute to PD pathogenesis (53). These results strengthen the reliability of our finding of 
Helicobacteraceae presence in the obese BMI group of PD patients, and suggests that the 
impact Helicobacteraceae has on increasing BMI and PD risk may be significant. 

Through conducting differential abundance analysis, the log2 fold change in abundance 
of 1 indicates a two times greater abundance of Sutterellaceae in PD patients of the obese 
than the healthy BMI groupings (FIGURE S2). This increase is fairly low, which may suggest 
that Sutterellaceae is not significantly associated with PD. Sutterellaceae abundance has been 
noticed to be lower in multiple sclerosis patients, however, no link has been observed to PD 
patients (53), which may align to the faint differential abundance results observed in our 
study. 

To determine significant taxonomic families associated with healthy and obese BMI 
groupings, indicator family taxa analysis was conducted. Based on the high value of 
uniqueness to and abundance within the obese BMI grouping, Veillonellaceae has been 
indicated to be the most significantly associated family to the obese BMI grouping of PD 
patients (TABLE 2). Veillonellaceae has previously been observed to be significantly 
abundant in a obesity group in contrast to a control group (54), which potentially relates to 
the significant association between Veillonellaceae and the obese BMI grouping observed in 
our study. Higher Veillonellaceae abundance has been implicated in PD (55-57) which further 
suggests that Veillonellaceae presence and abundance in the obese BMI grouping is positively 
correlated with PD. 

 
Limitations This was a study based on retrospective data, which limits our access to patient 
data across various stages of PD. In addition, we had a limited sample size of 197 patients 
with PD, which was reduced to 183 after removing subjects lacking data. To adequately 
represent sample richness, another 49 subjects were discarded due to the chosen sampling 
depth of 10232. Therefore, our results may not be representative of all PD patients. Including 
a larger number of patients could provide a more robust verification of our results, or perhaps 
reveal a greater role of alcohol and/or meat consumption in the gut microbial diversity of PD 
patients. There is also the limitation in that there was an unequal number of subjects in the 
PD versus Control groups, as well as the number of patients within the healthy, obese, and 
overweight BMI groupings, which limits our ability to make an accurate comparison between 
these groups. Additionally, we acknowledge that the reliance on BMI does not take into 
account muscle mass, body composition, as well as sex or race-based differences; thus, 
incorporating additional metrics such as the waist-to-height ratio may prove helpful in 
estimating patients’ body fat for future prospective studies.  
 
Conclusions The aim of this study was to determine the effects of BMI, alcohol consumption, 
and meat consumption on gut microbial diversity in PD patients. We hypothesized that 
differences would be observed between different categories for each of the three chosen 
lifestyle factors, but significant results were only found between BMI groupings in PD 
patients. In particular, BMI showed significant alpha diversity results in microbial 
phylogenetic diversity between healthy and obese, and healthy and overweight BMI 
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groupings of PD patients, but not in microbial community evenness, indicating that the 
decreased microbial diversity observed with increased BMI is driven by phylogenetic 
distance and taxonomic differences. We found that alcohol and meat consumption did not 
have significant differences in microbial phylogenetic diversity or evenness for patients with 
PD, and that microbial diversity and BMI are inversely linked. It was also found that the 
Veillonellaceae family was most significantly associated with PD patients within the obese 
BMI grouping. These findings highlight the effect that body mass has on gut microbial 
composition and its significance in Parkinson’s Disease. The decreased microbial diversity 
in overweight and obese PD patients and the specific taxonomic families found to be 
associated with these patients may offer further insight into the connection between obesity, 
disease, and the gut microbiome. 
 
Future Directions To further explore the role of BMI on both the gut microbiome of PD 
patients and age of disease onset, future studies could study the differences in microbial 
diversity of PD patients with differing BMI and compare the age of onset of PD across 
patients in different BMI groups. Additionally, to account for sex- or race-based differences 
contributing to BMI status, future studies should stratify patients according to these factors 
when conducting analyses of microbial diversity and age of disease onset for PD patients. By 
accomplishing this analysis, results could potentially demonstrate any existing effects of 
BMI-related microbial differences on PD onset.  

Additional studies could also explore the clinical and therapeutic applications of this 
research by using fecal analysis to detect PD biomarkers in patients with varying stages of 
PD. The application of fecal analysis in the early detection of PD would provide a non-
invasive method of assessing pathogenic microbial families, associated gut dysbiosis and 
interactions between the gut microbiome and the immune system contributing to the onset of 
PD. Patient fecal microbial diversity analysis profiles can be compared to the microbial 
families most significantly associated with PD from this study to provide insight regarding 
the application of fecal analysis as a diagnostic indicator of PD. Early diagnosis of PD can 
enable better and more effective treatment through early intervention to reduce disease 
progression and limit long-term effects on patient quality of life. Generation of a 
comprehensive biomarker atlas of PD is therefore critical for early intervention and to further 
understand the complexities of this devastating illness.  

For Faith’s Phylogenetic Diversity, we did not compare the PD group to the control group 
within the same BMI ratings due to lack of time and resources. It would be interesting to see 
if the effects caused by body mass on gut microbiome composition are also shown in the non-
PD population. Future studies could also examine the involvement of specific microbial 
families such as Helicobacteraceae and Veillonellaceae, in the onset of PD. This could be 
accomplished by quantifying the abundance of these particular families across PD patients in 
this dataset and other publicly available datasets, according to age of PD onset. With more 
insight on these particular microbial families, analysis of gut microbiomes can be directed at 
these microbes and allow for earlier PD diagnosis and further understanding of a patient’s PD 
progression. These studies could also help inform the development of therapeutic probiotics 
and fecal transplantation to alter the gut microbiome of PD patients as part of early 
intervention. 
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