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SUMMARY   Astronauts experiencing prolonged space travel report increased skin 
hypersensitivity and delayed wound healing as a result of changes to the skin microbiome 
during space travel. In this study, we explored the effects of close social relationships within 
isolated built environments on the human skin microbiome. We analyzed the effect of crew 
interactions on the microbiome dynamics of six astronauts using a dataset from a year long 
Earth-bound Mars simulation called the Hawaii Space Exploration Analog and Simulation IV 
(HI-SEAS IV) mission. Microbial profiles were processed by Mahnert et al. based on 
amplicons targeting the V4 region of the 16S rRNA gene. We performed alpha and beta 
diversity longitudinal volatility analysis, taxonomic classifications, PCoA analysis, 
differential abundance analysis, and designed Venn diagrams to determine changes in 
microbiome dynamics. Within the dataset, we found that crew member pairs appeared to trend 
towards similar skin microbiomes, and microbiomes within pairs were found to be 
significantly more similar than between pairs. Furthermore, we found that the taxonomic 
composition of crew member skin microbiomes changed significantly between final and 
initial time points of the  year-long mission. Our results suggest a potential for close physical 
interactions to modulate human skin microbiomes within isolated environments, and 
highlight the necessity for further examinations into the impact of such interactions on skin 
health. 
 
 
INTRODUCTION 

he skin microbiome is a major contributor to health and disease. The human skin is 
densely populated with bacteria, viruses, fungi, and arthropods (1). Together, these 
microorganisms make up the human skin microbiome, and host-microbiome 

interactions play a vital role in shaping host health. Many host-microbiome interactions are 
beneficial to the host, including calibration of tolerogenic immune responses, protection 
against pathogenic fungal and bacterial infections, and lipid metabolism (2). Conversely, 
dysregulation of the human skin microbiome is associated with disease, including recurring 
skin conditions such as atopic dermatitis and psoriasis (3). Dysbiosis of the skin microbiome 
has also been shown to increase susceptibility to more severe, acute infections by 
opportunistic bacteria such as Staphylococcus aureus and Staphylococcus epidermidis (4). 
While intrinsic factors such as age, sex, and body site can affect the human skin microbiome 
composition, extrinsic factors such as social relationships, built environment, and stress 
appear to play a disproportionate role in determining skin health (5, 6). 
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Social relationships, built environment and external stress factors impact the skin 
microbiome. As social animals, it is no surprise that interpersonal relationships impact the 
human skin microbiome. Families and couples that live together have been found to have 
significantly more similar gut and skin microbiomes compared to strangers (7, 8). Related to 
this, individuals and cohabitating groups that moved homes retained their microbial profile, 
as well as changing the microbial profile of their built environment (8). Built environment 
also impacts the human skin microbiome, and urban environments have been associated with 
decreased microbiome richness and evenness, and an increase in colonization by pathogenic 
fungal strains compared to rural environments (9). Psychological stress has also been 
implicated in detrimental skin microbiome changes and delayed wound healing (10, 11). 
Furthermore, isolated environments, such as those encountered in space travel, could 
potentially act as a unique model for the effect of prolonged interaction on skin microbiome 
community composition (12). 

Space travel is a known model for the effects of social and environmental isolation 
on skin health. Space travel presents a major change in a person’s social and environmental 
condition. Because microbial species are posited to be transferred through physical contact 
with humans, soil, local flora, and other environmental associations, as well as skin shedding, 
a severe decrease in social interactions could have a major effect on the skin microbiome of 
astronauts (8, 9). Furthermore, the extreme demands of space travel impose additional 
psychological stressors on astronauts. A 2019 study found that astronauts on the International 
Space Station (ISS) experienced significant changes in their skin microbiome over six to 
twelve months, with an overall increase in skin microbiome diversity, an increase in the 
abundance of pathogenic Staphylococcus and Streptococcus strains, and a decrease in beta- 
and gammaproteobacteria associated with protection from skin hypersensitivity (12). They 
also observed a greater incidence of skin rashes, validating several previous studies that also 
cited delayed wound healing and increased redness, itchiness, and bruising (13, 14). Another 
study published in 2021 analyzed microbial dynamics of crew members and the built 
environment of the Hawaii Space Exploration Analog and Simulation IV (HI-SEAS IV) 
mission, a year-long space travel simulation (15). Here, they confirmed an increase in overall 
skin microbiome diversity over time, a correlation between the microbiome of humans and 
their built environments, and significant differences in the microbiomes of various built 
environment surfaces (15).  

While these studies elucidate a role for space travel in the alteration of human skin 
microbiome composition and resulting disease, we have identified a knowledge gap 
pertaining to the effect of close social relationships within isolated environments on the 
human skin microbiome. Over the course of the HI-SEAS IV mission, the six crew members 
self-reported their ‘preferred interactions’, or who they physically interacted with most 
closely. These self-reports formed three pairs of crew members. Using these pairs, we can 
study how close social relationships impact the human skin microbiome within isolated built 
environments. We hypothesize that similarity in skin microbial composition will be greater 
among the preferred interaction pairs, as previous findings have shown that coinhabitant 
shedding and direct contact is known to lead to an increase in similarity of the microbiome 
composition between individuals (16, 17). 
 
METHODS AND MATERIALS 

Dataset information. The HI-SEAS IV mission, operated by the University of Hawaii with 
funding from NASA, took place in an isolated dome on Mauna Loa, Hawaii, for one year 
from August 28, 2015 to August 28, 2016 (15). Six crew members (three male, three female) 
lived in the habitat with no outside contact, and outdoor activities were performed in a mock 
space suit. Resupply events occurred nine times, with contact delays and sanitation. Crew 
members showered one to three times per week, and the habitat was cleaned once per week. 
Wipes were taken from the skin of each crew member’s torso every six weeks and stored at  
-20℃ until the end of the isolation period, at which point they were shipped to Europe for 
analysis, where they were stored at -80℃ (15). Analysis on these environmental and skin 
samples, such as DNA extraction, was carried out by Mahnert et al. (15). Mahnert et al. 
generated microbial profiles based on amplicons targeting the V4 region of the 16S rRNA 
gene and using the common primer pair F515-R806 with tags for Illumina sequencing (15). 
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Use of this primer pair allowed for coverage of most bacterial and some archaeal taxa (15). 
The raw amplicon data is available from the European Nucleotide Archive (accession number 
EMBL-EBI ERP118380). For any additional details regarding sample collection and analysis, 
refer to the paper generated by Mahnert et al. (15). 
 
Sequence quality control. Demultiplexed sequences were imported into QIIME2, corrected 
for sequencing errors, truncated, and clustered into amplicon sequence variants (ASVs) using 
DADA2 (18, 19). The quality of HI-SEAS IV demultiplexed sequences remained fairly 
consistent until base pair 291, with mean Phred quality scores above thirty six throughout the 
sequence, indicating a base call certainty greater than 99.9% (20). Thus, the truncation length 
was set at base pair 291. Lastly, sequences were clustered into ASVs using DADA2. At the 
end of DADA2 denoising and clustering, a feature table was created as well as representative 
sequences.  
 
Phylogenetic tree generation. A phylogenetic tree was generated to show evolutionary 
relationships between specimens for future diversity metrics such as Faith’s phylogenetic 
diversity and UniFrac distance (18). FastTree 2 was used to align ASVs and assess base pair 
differences for the generation of representative sequences (21). This was further processed to 
produce phylogenetic trees based on relatedness (unrooted) and ancestral information 
(rooted) (18, 21). 
 
Filtration of data. As we were only interested in the skin samples taken during isolation, the 
feature table was initially filtered, using QIIME2, to only include samples taken from the skin 
(18). This feature table was then further filtered, using the taxonomic classification of the 
ASVs, to exclude any mitochondrial sequences present, as our analysis focused on the 
presence of prokaryotic ASVs. To be able to deduce longitudinal changes in microbial 
diversity over the year-long isolation period, filtered feature tables were then generated based 
on collection time points. Although we initially planned to generate a filtered feature table 
for each individual collection time point, due to limited skin sample availability we had to 
group these collection time points into three sets of three, there being nine time points in total. 
Hence three filtered feature tables were generated, the first table covering days 0, 42, and 84, 
the second table covering days 126, 168, and 210, and the third table covering days 252, 294, 
and 336. These groupings represent early, middle, and late stages of the mission respectively. 
 
Alpha rarefaction. Alpha rarefaction curves were generated in QIIME2 (18). Alpha 
rarefaction curves and the features table were used to determine a rarefaction depth of 15,720 
reads per sample. This sequencing depth ensured retention of all six crew member skin 
microbiome samples at the initial and final collection time points while maximizing the 
number of ASVs maintained for proper statistical and taxonomic analysis.  
 
Analysis of alpha and beta diversity. Alpha and beta diversity metrics were run using 
QIIME2 on the initial skin-filtered table, as well as the three time point-filtered feature tables 
(18). Shannon diversity and Pielou’s evenness were selected as our alpha diversity metrics of 
interest, while weighted UniFrac distance was selected as our beta diversity metric of interest. 
The previously mentioned rarefaction depth of 15,720 reads per sample was chosen when 
running these metrics. 

As part of this process, Kruskal-Wallis and pairwise PERMANOVA statistical tests were 
carried out to be able to observe any potentially significant differences in diversity between 
the skin microbiome of the crew members both as individuals, as well as within and between 
the preferred interaction pairs (22, 23). Kruskal-Wallis tests were performed for alpha 
diversity metrics and pairwise PERMANOVA tests were performed for beta diversity 
metrics. 
 
Alpha and beta diversity longitudinal volatility analysis. The q2 longitudinal plugin in 
QIIME2 was utilized to run longitudinal volatility analysis on Shannon diversity, Pielou’s 
evenness, and weighted UniFrac distance (24). Volatility analysis can be used to assess the 
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volatility of a dependent variable, in this case our alpha and beta diversity artifacts, over a 
continuous, independent variable, in this case time (24). 
 
Taxonomic classification and taxa barplot generation. The Naïve Bayes classifier was 
used to predict the taxonomic affiliation of each representative sequence (25). This classifier 
was pre-trained with the Silva 138 99% OTUs to recognize the 515F/806R region of 16S 
rRNA gene (26). Taxonomic barplots were used to visualize the taxonomic composition of 
skin microbiomes from crew members (18). 
 
PCoA and differential abundance analysis. R was used to generate PCoA plots based on 
weighted Unifrac distance and for differential abundance analysis between the initial and final 
collection time points (27). PCoA plots of the three time point-filtered tables were visualized 
based on the selected rarefaction depth of 15,720 reads per sample. Differential abundance 
analysis only included significant differences between initial and final collection time points 
(p < 0.05). R packages employed included tidyverse, vegan, ape, phyloseq, DESeq2, ggplot2, 
and ggthemes (28-34). 
 
Venn diagrams. Shared and unique genera from taxa barplots were compared between crew 
members of preferred interaction pairs at the initial and final collection time point. These 
comparisons were used to illustrate Venn diagrams of preferred interaction pairs at the two 
time points. 
 
RESULTS 

Crew member skin microbiome diversity appeared to converge longitudinally but 
did not significantly change between time points. We first examined crew member skin 
microbiome alpha and beta diversity longitudinally. We found that Shannon diversity 
appeared to increase over time when examining all of our crew members (Fig. 1A). This 
highlights an apparent increase in skin microbiome diversity based on Shannon diversity 
which takes into account richness and abundance. However, there was no statistically 
significant difference by Shannon diversity between any of the time points (Kruskal-Wallis, 
q > 0.05). When looking at individual crew members, we noted the Shannon diversity 
appeared to increase for crew members 33, 35, and 36 over time (Fig. 1B). We also found 
that crew members seemed to converge towards more similar Shannon diversity values at the 
final collection time point (Fig. 1B). Convergence showed how their skin microbiome 
diversity appeared to become more similar with respect to Shannon diversity values towards 
the end of the isolation period. 

Assessment of Pielou’s evenness, a metric of community richness and evenness of the 
skin microbiome for all crew members together exhibited no discernable trend nor significant 
differences between the time points (Kruskal-Wallis, q > 0.05) (Fig. 1C). When looking at 
individual crew members we found that Pielou’s evenness appeared to increase for crew 
members 33 and 36 over time, illustrating an apparent increase in skin microbiome diversity 
(Fig. 1D). We also noted an apparent convergence of crew members towards a similar 
Pielou’s evenness value at the final collection time point (Fig. 1D). Convergence depicted 
how crew member skin microbiomes seemed to become more similar with respect to Pielou’s 
Evenness values near the end of the isolation period, although these findings are not 
statistically significant. 

We next examined the longitudinal volatility of axis 1 of our weighted UniFrac distance 
PCoA for all crew members and found no clear trend nor significant differences between time 
points (pairwise PERMANOVA, q > 0.05) (Fig. 1E). Examining individual crew members, 
we observed an upward trend for crew members 32, 35, and 36 (Fig. 1F). This highlighted an 
apparent relative change in crew member skin microbiome similarity as measured by 
weighted UniFrac distance PCoA which accounts for abundance and phylogenetic distance. 
We observed two points of convergence of weighted UniFrac distance on day 252 (Fig. 1F). 
Two groups of crew members 31, 34, and 35 and crew members 32, 33, and 36 respectively 
appeared to become similar (Fig. 1F). Convergence showed that the microbiome diversity of 
crew members within these two groups appeared to become more similar towards the end of 
the isolation period, however quantitative analysis did not support this observation.  
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Preferred interaction patterns had a significant impact on skin microbial diversity. 

Considering the aforementioned convergence patterns that were observed in crew member 
skin microbiome diversity, we were interested in whether preferred interaction between crew 
members had an impact on any potential convergence. Hence, we then examined the potential 
influence of preferred interaction between certain crew members on the development of 
similarities or differences in microbial diversity over the isolation period. The first step in this 
preferred interaction analysis was to look within these interaction pairs and compare one crew 

FIG. 1 Average crew skin microbiome diversity stays relatively constant longitudinally but individual 
analysis displays convergence trends. Longitudinal volatility analysis of Shannon diversity of (A) all crew 
members and (B) individual crew members. Longitudinal volatility analysis of Pielou’s evenness of (C) all crew 
members and (D) individual crew members. Longitudinal volatility analysis along PCoA axis 1 (25.07%) based 
on weighted UniFrac distance of (E) all crew members and (F) individual crew members. Fig. 1F is parsed out 
in Fig. 3 as pairs. No significant difference was observed between time points for all crew members (Kruskal-
Wallis, pairwise PERMANOVA, q > 0.05) (A, C, E). 
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member to the other. To this end, we carried out weighted UniFrac distance beta diversity 
analysis, and once again used axis 1 of the weighted UniFrac distance PCoA to generate 
longitudinal volatility plots, one for each preferred interaction pair (Fig. 2A-C). For preferred 
interaction pair 31-34, weighted UniFrac distances initially fluctuated without a discernible 
pattern, but then seemed to converge beginning on day 252 of the isolation period,  
 

 
overlapping by the end of isolation (Fig. 2A). This trend pointed to these two crew members 
potentially becoming more similar with regards to skin microbiome diversity over time. For 
pair 32-33, a similar pattern was observed. The weighted UniFrac distances had the same 
initial fluctuation, this time appearing to converge on day 210 of the isolation period, once 
again overlapping by the end of isolation (Fig. 2B). Preferred interaction pair 32-33 also 
appeared to grow more similar in skin microbiome diversity over time. For pair 35-36 
however, there was no pattern of convergence (Fig. 2C). In fact, weighted UniFrac distances 
for crew members 35 and 36 appear closer to each other at the beginning of isolation than 
they were at the end (Fig. 2C). 

After within-pair comparison, we compared microbial diversity between these preferred 
interaction pairs. It was important to do so as analyzing microbial diversity both within and 
between these pairs allowed us to understand what impact preferred interaction would be 

FIG. 2 Longitudinal analysis 
within preferred interaction 
pairs displays patterns of 
convergence for two out of three 
pairs. Longitudinal volatility 
analysis along PCoA axis 1 
(25.07%) based on weighted 
UniFrac distance for preferred 
interaction pairs (A) 31-34, (B) 
32-33, and (C) 35-36. Fig. 3 
shows Fig. 1F parsed out into 
pairs. 
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having on microbiome composition. For this purpose, another weighted UniFrac distance 
longitudinal volatility plot was generated, separated based on preferred interaction pairs (Fig. 
3A). Based on this longitudinal analysis, the only noticeable trend was that of pair 31-34 
growing more similar in microbiome diversity to the other two pairs, 32-33 and 35-36 (Fig. 
3A).  
 

 
 

 
The next step was to test for significant differences between the interaction pairs via beta 

diversity analysis. As mentioned previously, the collection time points were grouped into 
three sets of three: days 0-84, 126-210, and 252-336. The weighted UniFrac distance analysis 
returned two significant results. Firstly, for the time point group covering days 0-84, weighted 
UniFrac distances were significantly different between pair 31-34 and pair 35-36 (pairwise 
PERMANOVA, q = 0.021) (Fig. 3B). Secondly, for the time point group covering days 252-
336, weighted UniFrac distances were found to be significantly different between pairs 31-
34 and 32-33 (pairwise PERMANOVA, q = 0.012) (Fig. 3B). There were no significant 
differences between any of the pairs for the time point group covering days 126-210 (Fig. 
3B). As a note, when we removed the longitudinal aspect of our analysis and instead ran 
weighted UniFrac distance diversity analysis on all collection time points combined, pair 31-
34 was found to be significantly different from both pair 32-33 (pairwise PERMANOVA, q 
= 0.009), and pair 35-36 (pairwise PERMANOVA, q = 0.009) (Supplemental Fig. 3). 

Taxonomic composition of preferred interaction pairs varied between the start and 
end of the isolation period. The taxonomic composition of preferred interaction pairs was 
assessed at the initial and final collection time point via taxonomic barplots to further examine 

FIG. 3 Longitudinal analysis between preferred interaction pairs shows significant differences between some pairs. 
(A) Longitudinal volatility analysis along PCoA axis 1 (25.07%) based on weighted UniFrac distance for all preferred 
interaction pairs. (B) Weighted UniFrac distance PCoA plots for the three filtered time points where pairs are separated 
by eclipses. Significant differences exist between preferred interaction pairs 31-34 and 35-36 for days 0-84 (pairwise 
PERMANOVA, q = 0.021) and between pairs 31-34 and 32-33 for days 252-336 (pairwise PERMANOVA, q = 0.012). 
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the differences in diversity that were observed longitudinally. Comparison of these barplots 
suggest an increased similarity in taxonomic composition between all crew members at the 
final relative to the initial collection time point (Supplemental Fig. 1). This seems to reflect 
the apparent trend towards homogeneity observed in the longitudinal analysis (Fig. 1). Based 
on the taxonomic analysis, Venn diagrams were generated to represent the number of unique 
and shared taxa at the genus level within preferred interaction pairs at the start and end of the 
isolation period (Fig. 4). Pairs 31-34 and 32-33 showed minor changes in the number of 
shared taxa at the final relative to the initial collection time point, +1 and -2 respectively. In 
comparison, we observed an increase of 24 shared taxonomic genera for pair 35-36. Notably, 
there was a considerable shift between the initial and final collection time point regarding the 
number of taxa unique to one crew member within each pair. A decrease in phylogenetic 
diversity of crew members 31 and 33 was observed by the final collection time point, where 
genera unique to each member decreased by 26 and 42 respectively. Contrastingly, crew 
members 32, 34, 35, and 36 showed an increase in the number of unique genera by 3, 26, 4, 
and 46 respectively (Fig. 4). 
 

 
To identify the skin microbiome taxa significantly associated with prolonged isolation, 

differential abundance analysis at the genus level of all crew members was performed. 
Abundance was derived by comparison of the final relative to the initial collection time point. 
Differential abundance analysis identified eight microbial genera that were significantly more 
abundant at the final relative to the initial collection time point in the cohort’s skin 
microbiome: WPS-2, Vulcaniibacterium, Blastomonas, Cloacibacterium, Thermaerobacter, 
Verticiella, Bacteriap25, and Nitrosopumilaceae (p<0.05). In comparison, six microbial 
genera were identified as significantly less abundant: Clostridium sensu stricto 13, 
Lysinibacillus, Devosia, Blautia, Modestobacter, and Massilia (Supplemental Fig. 2) 
(p<0.05). 

 
DISCUSSION 

Longitudinal changes in crew member microbiome diversity corroborates previous 
findings and seems to illustrate convergence towards the end of the isolation period. Our 
first avenue of exploration was to examine how crew member skin microbiome diversity 
changed over time in the HI-SEAS IV isolated environment. We found that skin microbiome 
diversity when taking into consideration both alpha diversity metrics, Shannon diversity and 
Pielou’s evenness, as well as beta diversity metrics with weighted UniFrac distance, did not 
exhibit significant differences longitudinally (Fig. 1A-F). However, we observed the trend 
that Shannon diversity appeared to increase throughout the isolation period. This apparent 

FIG. 4 Taxonomic composition 
of preferred interaction pairs 
varies between the start and end 
of the isolation period. Venn 
diagrams represent the number of 
unique and shared taxa at the genus 
level within preferred interaction 
pairs at the start and end of the 
isolation period. 
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trend affirms a prior study using HI-SEAS IV mission data which found that skin crew 
microbiome diversity increased throughout the isolation period with respect to Shannon 
diversity (15). This also seems to corroborate a study of the astronauts on the ISS that 
identified an increase in overall skin microbiome diversity (12). An increase in skin 
microbiome diversity could be resulting from direct physical contact and shedding of 
microorganisms of the crew within the confined environment (16, 17). Confounding variables 
could be influencing this apparent increase in skin microbiome diversity, through potential 
introduction of microorganisms through resupply events and their associated addition of 
fermented products, and simulated Martian walks on Mauna Loa with mock spacesuits (15, 
35).  

We also noticed that this apparent increase in microbiome diversity is only discernible 
with Shannon diversity and not with Pielou’s evenness (Fig. 1A, C, E). This could suggest 
that the trend is only visible when we do not account for evenness. Thus, the evenness which 
accounts for relative abundance of the skin microbiome might be more similar amongst the 
crew members than abundance longitudinally. The presence of rare ASVs could potentially 
be a factor in driving these differences, especially considering we did not filter rare ASVs out 
of the dataset prior to analysis. The reasoning for this choice is explained further in 
limitations.  

Additionally, we noted convergence of both alpha diversity metrics with Shannon 
diversity and Pielou’s evenness values appearing to become more similar between the crew 
by the end of the isolation period (Fig. 1B, D, F). We also noted trends of convergence 
between two groups of crew members with 31, 34, and 35 converging together and separately 
from 32, 33, and 36. As described in the previous section, these observed convergences could 
be explained by direct physical contact and shedding of microbes between crew members 
leading to homogenization of their skin microbiomes (16, 17). The convergence with alpha 
diversity metrics was only observed at the final collection time point making it more difficult 
to conclusively determine a trend. However, the bimodal convergence pattern with PCoA axis 
1 based on weighted UniFrac distance became apparent earlier in the isolation period at day 
252 lending more credibility to this trend. This bimodal pattern of convergence could reflect 
potential differences in the two groups of crew members in terms of crew interaction as well 
as confounding variables such as hygiene practices and spatial preferences within the isolated 
environment (15). Changes in skin microbiome is a crucial consideration in space exploration 
because a decrease in diversity has been associated with dysbiosis and correlated skin diseases 
which would require predetermined planning to manage prior to leaving Earth (1, 4, 12).  

Observed significance of preferred interaction on changes in skin microbial 
diversity points to the impact of the personal bubble. Our analysis of preferred interaction 
patterns in the HI-SEAS IV study returned interesting results regarding the impact of such 
patterns on the diversity of crew member skin microbiomes. Our longitudinal analysis 
highlighted significant differences both between preferred interaction pairs 31-34 and 32-33, 
as well as between pairs 31-34 and 35-36, albeit within different time point groups (Fig. 3B). 
Further, our overall weighted UniFrac distance analysis, accounting for all skin samples 
collected during the isolation period, found significant differences between preferred 
interaction pair 31-34 and both other pairs 32-33 and 35-36 (Supplemental Fig. 3). When 
looking within these pairs however, no significant difference was observed between the crew 
members. These findings point to the potential effect that close physical interaction and social 
circles may have on the development of the human skin microbiome.  

Previous research has found that cohabitation and close social relationships are often 
positively correlated with a similarity in the diversity and composition of the microbiome (16, 
17). One study even observed that cohabitating humans and their pet dog all exhibited shared 
microbiota (17). Our analysis of the relationship between preferred interaction and the skin 
microbiome of the HI-SEAS IV crew members appears to be exhibiting an analogous 
correlation. It seems then, that even in an isolated environment such as the HI-SEAS IV dome, 
physical interaction patterns could play a part in skin microbiome diversity and composition. 
Even though all the crew members were cohabiting the same isolated environment, pairs that 
interacted most frequently appear to show greater similarity in their skin microbiota compared 
to the other pairs. Perhaps the same concept would apply to space exploration missions. Space 
flight vessels and planetary habitats are isolated environments, and although further research 
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into this topic is necessary, our findings may be providing a potential avenue to explore in 
regard to the developmental patterns of astronaut skin microbiomes during future manned 
spaceflight and colonization efforts.  

Taxonomic analysis shows a lack of noticeable increase in shared microbial taxa 
within preferred interaction pairs. Based on the more even distribution at final relative to 
initial time point by taxonomic barplots (Supplemental Fig. 1), and the patterns of 
convergence observed within pairs (Fig. 2A, B), we expected a trend towards taxonomic 
homogeneity within the preferred interaction pairs. Despite these observations, an increase in 
shared genera was only observed within pair 35-36 (Fig. 4), which unexpectedly was also the 
pair that appeared to show no pattern of convergence (Fig. 2C). This contradiction suggests 
a lack of correlation between close physical interaction and phylogenetic affiliation at the 
genus level. That being said, individual crew members, including 36, showed considerable 
change in phylogenetic diversity at the final relative to initial time point. The number of 
genera unique to each member within pairs changed in either direction by as much as -42 and 
+46 (Fig. 4). Thus, while there are substantial changes in microbiome composition within an 
isolated environment, there seems to be no consistent pattern of increase or decrease in 
taxonomic diversity. This could be explained by the impacts of confounding or lurking 
variables that we do not consider in our analysis including weekly general cleaning, time of 
shower relative to sampling, and the introduction of microorganisms by fermented products 
(15). It would be important to perform multiple longitudinal analyses against those variables 
measured by Mahnert et al. (15) to identify which, if any, significantly impact taxonomic 
composition. By doing so, space travel can be optimized to select for microbes that are 
beneficial to hosts and against those that could be detrimental. 

Differential abundance analysis comparing initial and final time points showed several 
enriched and suppressed genera within crew member skin microbiomes (Supplemental Fig. 
2). Suppressed genera included Blautia, Lysinibacillus, and Massilia. Lysinibacillus have 
known antifungal capabilities, while Blautia depletion is correlated to rosacea, an chronic 
inflammatory skin condition (36, 37). Notably, Massilia belong to the betaproteobacteria, 
which the 2019 study on the ISS also reported to be suppressed (12). Beta- and 
gammaproteobacteria, including Massilia and Blautia, are abundant in the soil, which may 
explain their suppression in space travel and space travel simulations (38, 39). Enriched 
genera included Blastomonas and Cloacibacterium, which are associated with antibiotic 
resistance and untreated wastewater respectively (40, 41). Interestingly, enriched genera also 
included Thermaerobacter, and Bacteriap25, genera associated with deep ocean sediments 
(42, 43). Furthermore, the archaeon Nitrosopumilaceae was enriched, which does not 
generally colonize humans (44).  

 
Limitations A few important limitations exist in our analysis, largely due to the data 
collection process during the HI-SEAS IV study by Mahnert et al. (15). With regard to the 
collection of skin wipes, there were no replicates collected per time point (15). This meant 
that only one skin sample was collected from each crew member per collection time point, 
which made us unable to run the beta diversity metrics for each time point due to lack of 
sufficient skin samples. This, as mentioned previously, was the reason our time point analysis 
was done in three groups of three, rather than per collection time point. Further, skin wipes 
were only collected from the torso. It has been shown that the composition of the skin 
microbiome can vary significantly from one body site to the next (1). Hence, specifying the 
exact torso location, sampling from more body sites, and increasing the limited sample size 
may have proven insightful. 

Moreover, the concept of ‘preferred interaction’ is not clearly defined beyond the fact 
that the pairings were based on self-reported interaction patterns between the crew members 
(15). There was no mention of the types of activities the crew members within the pairs shared 
with one another, or how often they interacted with each other as opposed to the other 
participants. Moreover, the metadata category for preferred interaction pairs only consisted 
of combining the individual crew member skin samples into that of a pair. Perhaps the 
addition of a skin sample type taken after the pairs physically interacted, for instance after a 
handshake or a hug, could have introduced novel data for downstream analysis. 
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Furthermore, we chose not to filter for rare ASVs in our analysis pipeline in order not to 
lose certain significant but rare ASVs. However, this would come with the caveat of potential 
sequencing errors having been included in the overall analysis. We still believed that the pros 
outweighed the cons in this scenario, as we lost a significant amount (~40%) of ASVs if we 
did filter for rare (0.005%) ASVs, but it is important to make mention of it as a potential 
limitation. 

Lastly, other confounding variables including the impact of the environment or lifestyle 
were not considered. For example, no record was taken in regard to the use of any potential 
antibiotics or probiotics by the HI-SEAS IV crew members. Such compounds could introduce 
significant changes in microbiota composition, and could act as confounding variables when 
it comes to the analysis of the human microbiome (45). 
 
 
Conclusions Our study aimed to assess the impact of prolonged environmental isolation and 
preferred interaction patterns on the diversity and composition of the skin microbiome over 
time within the HI-SEAS IV mission. We first examined the change of crew member skin 
microbiome diversity within the isolated environment and found that it appeared to trend 
towards homogeneity over time. However, there was no significant difference in diversity 
between collection time points, potentially limiting the credibility of this trend. Next, we 
examined the impact of preferred interactions on skin microbiome diversity where we 
observed significant differences between preferred pairs, but not within. Our findings point 
to the possible effect that preferred interactions might have on the trajectory of skin 
microbiome evolution. Finally, we examined taxonomic composition comparing the final to 
the initial collection time point accounting for preferred interactions. Our results suggest 
differences in taxonomic composition and a lack of noticeable increase in shared microbial 
taxa between the two time points. Our findings provide a foundation for future examinations 
of skin microbiome structure and function within isolated environments in the context of 
space exploration.  
 
 
Future Directions To further characterize skin microbiome changes in isolation, future 
studies should examine taxonomy and diversity metrics in post-isolation skin samples which 
were collected at day 400. Our results showed a convergence in diversity within pairs 31-34 
and 32-33 (Fig. 2A, B). As such, divergence at day 400 would support that social relationships 
and built environments have significant impacts on microbial diversity. Comparison of 
compositional changes during and after isolation would provide valuable information about 
whether these changes from isolation are temporary or sustained. Moreover, it could offer 
insight into how the skin microbiome of an astronaut changes after they return to Earth which 
has further implications on individual and community health. 

To better define the impact of preferred interactions on diversity and taxonomic 
composition, it would be worthwhile to assess the relative contribution of different variables 
on the changes we observe in diversity. For example, preliminary analysis of PCoA by 
phenotype (data not shown) showed clustering patterns suggestive of some impact on 
diversity. Given samples were collected by wipes from the torso, shower duration and timing 
likely also contribute to longitudinal changes in diversity. As such, future studies could 
explore or control for the effect of other variables on diversity metrics. This could allow for 
better understanding of the interaction between different variables and their cumulative 
impact on diversity in an isolated environment. Moreover, it would address gaps in 
knowledge from our analysis that would be necessary to select for and against microbial 
species to ensure host health in space travel. 

Future studies could build upon our investigation by performing further differential 
abundance analysis and literature reviews to characterize the skin microbiome of a general 
population. An initial look into differential abundance analysis revealed several genera that 
were significantly enriched or suppressed within crew member skin microbiomes at the final 
relative to the initial time point (Supplemental Fig. 2). Future studies could perform 
differential abundance analysis between sequential timepoints to identify when major 
microbial taxa were introduced to the environment. This could have significant implications 
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on host health in space travel given we observed suppression of Blautia and enrichment of 
Blastomonas, which are associated with a chronic skin inflammatory condition and antibiotic 
resistance respectively (37, 40). Given the potential health implications this could have on 
astronauts, it could be important to assess how representative our cohort is of a general 
population. A literature review of the typical skin microbiome composition could offer insight 
into the generalizability of our findings. 

Another path future studies could take when building upon our differential abundance 
analysis is through functional profiling of the skin microbiome. Understanding how certain 
functional niches are filled by microbes in an isolated environment, such as HI-SEAS IV, 
could prove invaluable in selecting for beneficial microbes in future manned spaceflight 
missions. 
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